一張矩形紙片OABC平放在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A在x的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
①如圖,將紙片沿CE對(duì)折,點(diǎn)B落在x軸上的點(diǎn)D處,求直線EC解析式;
②在①中,設(shè)BD與CE的交點(diǎn)為P,若點(diǎn)P,B在拋物線y=x2+bx+c上,求b,c的值;
③若將紙片沿直線l對(duì)折,點(diǎn)B落在坐標(biāo)軸上的點(diǎn)F處,l與BF的交點(diǎn)為Q,若點(diǎn)Q在②的拋物線上,求l的解析式.精英家教網(wǎng)
分析:①本題的關(guān)鍵是求出E點(diǎn)的縱坐標(biāo),即AE的長(zhǎng),連接DE,根據(jù)折疊的性質(zhì)可知BE=DE,設(shè)AE=x,那么BE=DE=4-x,在直角三角形ODC中,BC=5,OC=4,根據(jù)勾股定理可得出OD=3,那么AD=2,因此在直角三角形DEA中,根據(jù)勾股定理有x2+22=(4-x)2,據(jù)此可求出AE的長(zhǎng),也就得出了E點(diǎn)的坐標(biāo),然后用待定系數(shù)法即可求出直線CE的解析式.
②本題考的是用待定系數(shù)法求二次函數(shù)的解析式,關(guān)鍵是求出P點(diǎn)的坐標(biāo).過P作PG⊥OA于G,那么PG是三角形DAB的中位線,因此PG=
1
2
AB=2,DG=
1
2
AD=1,據(jù)此可求出P點(diǎn)坐標(biāo)為(4,2).然后將B,P坐標(biāo)代入拋物線的解析式中即可求出b,c的值.
③本題要分兩種情況進(jìn)行討論:
1、當(dāng)F在x軸上時(shí),可仿照②的解法,過Q作x軸的垂線,那么不難得出Q點(diǎn)的縱坐標(biāo)為AB的一半即為2,然后將其代入拋物線的解析式中即可求出Q點(diǎn)的坐標(biāo).
2、當(dāng)F在y軸上時(shí),方法與一類似,只不過是過Q作y軸的垂線,得出Q的橫坐標(biāo)為BC的一半即
5
2
,然后方法同一.
解答:精英家教網(wǎng)解:①連接DE,
∵根據(jù)折疊的性質(zhì)可知BE=DE,
設(shè)AE=x,則BE=DE=4-x,
在Rt△OCD中,BC=CD=5,OC=4,
∴OD=3,
∴AD=2,
∴在Rt△DEA中,x2+22=(4-x)2,解得x=
3
2
,
∴E(5,
3
2
),
設(shè)直線CE的解析式為y=kx+b(k≠0)
b=4
5k+b=
3
2
,解得
k=-0.5
b=4
,
∴直線CE的解析式為:y=-0.5x+4;

②過P作PG⊥x軸于G
精英家教網(wǎng)
據(jù)題知,PG∥AB,PD=PB
∴PG=
1
2
AB=2,DG=
1
2
AD=1
∴P點(diǎn)坐標(biāo)為(4,2)
∵點(diǎn)P,B在拋物線y=x2+bx+c上
∴b=-7,c=14;

③當(dāng)點(diǎn)F在x軸上時(shí),過Q作QM⊥x軸于M
精英家教網(wǎng)
同②可知QM=
1
2
AB=2,則Q點(diǎn)的縱坐標(biāo)為2
得x2-7x+14=2
∴x=3或x=4
∴Q點(diǎn)的坐標(biāo)為(3,2)或(4,2)
當(dāng)Q點(diǎn)坐標(biāo)為(3,2)時(shí),如圖,OM=3,MA=2,F(xiàn)A=4
AB=4
FA=AB,而l為BF的中垂線
∴點(diǎn)A在l上
∴l(xiāng)的解析式為y=-x+5
當(dāng)Q點(diǎn)坐標(biāo)為(4,2)時(shí),如圖,OM=4,MA=1,OF=1,BF=5,而CB=5.
∴BF=CB
∵l為BF的中垂線,
∴點(diǎn)C在l上,
∴l(xiāng)的解析式為y=-
1
2
x+4.
當(dāng)點(diǎn)F在y軸上時(shí),可求得Q(
5
2
,
11
4
),l與y軸交點(diǎn)為(0,
31
4

∴l(xiāng)的解析式為y=-2x+
31
4

綜上,l的解析式為y=-x+5或y=-
1
2
x+4或y=-2x+
31
4
點(diǎn)評(píng):本題著重考查了矩形的性質(zhì)、圖形翻折變換、中位線定理以及一次函數(shù)和二次函數(shù)的相關(guān)知識(shí)等重要知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(10,0),C點(diǎn)坐標(biāo)為(0,6),D是BC邊上的動(dòng)點(diǎn)(與點(diǎn)B、C不重合).如圖②,將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞c(diǎn)E,將△BDE沿DE翻折,得到△GDE,并使直線DG,DF重合.
(1)圖①中,若△COD翻折后點(diǎn)F落在OA邊上,求直線DE的解析式;
(2)設(shè)(1)中所求直線DE與x軸交于點(diǎn)M,請(qǐng)你猜想過點(diǎn)M、C且關(guān)于y軸對(duì)稱的拋物線與直線DE的公共點(diǎn)的個(gè)數(shù),在圖①的圖形中,通過計(jì)算驗(yàn)證你的猜想;
(3)圖②中,設(shè)E(10,b),求b的最小值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖一,平面直角坐標(biāo)系中有一張矩形紙片OABC,O為坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(10,0),C點(diǎn)坐標(biāo)為(0,6),D是BC邊上的動(dòng)點(diǎn)(與點(diǎn)B,C不重合),現(xiàn)將△COD沿OD翻折,得到△FOD;再在AB邊上選取適當(dāng)?shù)狞c(diǎn)E,將△BDE沿DE翻折,得到△GDE,并使直線DG、DF重合.
(1)如圖二,若翻折后點(diǎn)F落在OA邊上,求直線DE的函數(shù)關(guān)系式;
(2)設(shè)D(a,6),E(10,b),求b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值;
(3)一般地,請(qǐng)你猜想直線DE與拋物線y=-
1
24
x2+6的公共點(diǎn)的個(gè)數(shù),在圖二的情形中通過計(jì)算驗(yàn)證你的猜想;如果直線DE與拋物線y=-
1
24
x2+6始終有公共點(diǎn),請(qǐng)?jiān)趫D一中作出這樣的公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(Ⅰ)求證:△POE∽△BAP;
(Ⅱ)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(Ⅲ)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(Ⅳ)在(Ⅲ)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案