【題目】如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.
(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;
(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;
(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;
(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.
【答案】(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.
【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;
(2)分點Q在BD上方和下方的情況討論求解即可.
(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;
(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當(dāng)點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.
解:(1)如圖,過點P做PE⊥AD于點E
由已知,AP=PQ,∠APQ=90°
∴△APQ為等腰直角三角形
∴∠PAQ=∠PAB=45°
設(shè)PE=x,則AE=x,DE=4﹣x
∵PE∥AB
∴△DEP∽△DAB
∴=
∴=
解得x=
∴PA=PE=
∴弧AQ的長為2π=π.
故答案為:45,,π.
(2)如圖,過點Q做QF⊥BD于點F
由∠APQ=90°,
∴∠APP0+∠QPD=90°
∵∠P0AP+∠APP0=90°
∴∠QPD=∠P0AP
∵AP=PQ
∴△APP0≌△PQF
∴AP0=PF,P0P=QF
∵AP0=P0Q0
∴Q0D=P0P
∴QF=FQ0
∴∠QQ0D=45°.
當(dāng)點Q在BD的右下方時,同理可得∠PQ0Q=45°,
此時∠QQ0D=135°,
綜上所述,滿足條件的∠QQ0D為45°或135°.
(3)如圖當(dāng)點Q直線BD上方,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時
過點Q做QF⊥BD于點F,則QF=BP
由(2)可知,PP0=BP
∴BP0=BP
∵AB=3,AD=4
∴BD=5
∵△ABP0∽△DBA
∴AB2=BP0BD
∴9=BP×5
∴BP=
同理,當(dāng)點Q位于BD下方時,可求得BP=
故BP的長為或
(4)由(2)可知∠QQ0D=45°
則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,
當(dāng)點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1
當(dāng)點P與點D重合時,點Q與點E重合,此時,CE=4+3=7
∴EF===5
過點C做CH⊥EF于點H
由面積法可知
CH===
∴CQ的取值范圍為:≤CQ≤7
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)k≠0,若函數(shù)y1=kx+3,y2=(x﹣k)2+k和y3=(x+k)2﹣k的圖象與y軸依次交于A,B和C三點,設(shè)函數(shù)y2,y3的圖象的頂點分別為D,E.
(1)當(dāng)k=1時,請在直角坐標(biāo)系中,分別畫出函數(shù)y1,y2,y3的草圖,并根據(jù)圖象,寫出你發(fā)現(xiàn)的兩條結(jié)論;
(2)BC長與k之間是正比例函數(shù)關(guān)系嗎?請作出判斷,并說明理由;
(3)若△ADE的面積等于9,求y2隨x的增大而減小時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點P(m,n)是該拋物線的頂點,若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校圖書館為了滿足同學(xué)們閱讀課外書的需求,計劃購進甲、乙兩種圖書共100套,其中甲種圖書每套120元,乙種圖書每套80元.設(shè)購買甲種圖書的數(shù)量套.
(1)按計劃用11000元購進甲、乙兩種圖書時,問購進這甲、乙兩種圖書各多少套?
(2)若購買甲種圖書的數(shù)量要不少于乙種圖書的數(shù)量的,購買兩種圖書的總費用為元,求出最少總費用.
(3)圖書館在不增加購買數(shù)量的情況下,增加購買丙種圖書,要求甲種圖書與丙種圖書的購買費用相同.丙種圖書每套100元,總費用比(2)中最少總費用多出1240元,請直接寫出購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了_____名學(xué)生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;
(2)將條形統(tǒng)計圖補充完整;
(3)運用這次的調(diào)查結(jié)果估計1200名學(xué)生中最喜歡用QQ進行溝通的學(xué)生有多少名?
(4)甲、乙兩名同學(xué)從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點A、B的滑動角.
(1)已知∠APB是⊙O上關(guān)于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB= °;
②若⊙O的半徑是1,AB=,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關(guān)于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為有效利用電力資源,某市電力局采用“峰谷”用電政策,每天8:00﹣22:00為“峰時段”,22:00至次日8:00為“谷時段”.嘉淇家使用的是峰谷電價,他將家里2018年1月至5月的峰時段和谷時段用電量繪制成如圖所示的條形統(tǒng)計圖,已知嘉淇家1月份電費為51.8元,2月份電費為50.85元.
(1)“峰電”每度 元,“谷電”每度 ;
(2)嘉淇家3月份用電量比這5個月的平均用電量少1度,且3月份所交電費為49.54元,則3月份“峰電”度數(shù)為 度;
(3)2018年6月,嘉淇單位決定給職工補貼前五個月中的兩個月份的電費,求恰好選中3月份和4月份的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿;兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計,EF長度遠大于車輛寬度),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,該地下車庫出口的車輛限高標(biāo)志牌設(shè)置如圖4是否合理?請通過計算說明理由.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線C1:y=﹣(x+m)2+m2(m>0),拋物線C2:y=(x﹣n)2+n2(n>0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1:y=﹣(x+1)2+1與拋物線C2:y=(x﹣)2+2是派對拋物線,已知派對拋物線C1,C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2于C,拋物線C2的對稱軸交拋物線C1與D.
(1)已知拋物線①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,則拋物線①②③④中互為派對拋物線的是 (請在橫線上填寫拋物線的數(shù)字序號);
(2)如圖1,當(dāng)m=1,n=2時,證明AC=BD;
(3)如圖2,連接AB,CD交于點F,延長BA交x軸的負半軸于點E,記BD交x軸于G,CD交x軸于點H,∠BEO=∠BDC.
①求證:四邊形ACBD是菱形;
②若已知拋物線C2:y=(x﹣2)2+4,請求出m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com