【題目】小明在學(xué)習(xí)“圓的對稱性”時知道結(jié)論:垂直于弦的直徑一定平分這條弦,請嘗試解決問題:如圖,在Rt△ACB中,∠ACB=90°,圓O是△ACB的外接圓.點(diǎn)D是圓O上一點(diǎn),過點(diǎn)D作DE⊥BC,垂足為E,且BD平分∠ABE,
(1)判斷直線ED與圓O的位置關(guān)系,并說明理由.
(2)若AC=12,BC=5,求線段BE的長.
【答案】(1)直線ED與⊙O相切,見解析;(2)4
【解析】
(1)直線ED與⊙O相切.連接OD.根據(jù)圓的性質(zhì)和等邊對等角可得∠ODB=∠OBD,等量代換得到∠ODB=∠DBE,根據(jù)平行線的判定和性質(zhì)得到∠DEC=∠ODE=90°,再根據(jù)垂直的定義和性質(zhì)可得OD⊥DE,根據(jù)切線的判定即可求解;
(2)如圖,延長DO交AC于點(diǎn)H,連結(jié)CO,構(gòu)建直角△ABC的中位線OH,運(yùn)用三角形中位線定理和勾股定理分別求得OH=HO=BC=、AB=13,結(jié)合圖形找到相關(guān)線段間的和差關(guān)系求得線段BE的長度即可.
(1)如圖,連接OD.
∵OB=OD,
∴∠ODB=∠OBD,
又∵∠OBD=∠DBE,
∴∠ODB=∠DBE,
∴OD∥BE,
又∵DE⊥BC,
∴∠DEC=90°,
∴∠ODE=90°,
∴OD⊥DE,
又∵OD為半徑,
∴直線ED與⊙O相切;
(2)如圖,延長DO交AC于點(diǎn)H,連結(jié)CO,
∵OD∥BE,∠ODE=90°,
∴∠OHC=90°,即OH⊥AC,
又∵OA=OC,
∴AH=CH,又由O是AB的中點(diǎn),
∴HO是△ABC的中位線,
∴HO=BC=.
∵AC為直徑,
∴∠ACB=90°,
∴AC=12,BC=5,
∴AB===13,
∴OA=OD=AB=.
∴HD=HO+OD=9
由四邊形CEDH是矩形,
∴CE=HD=9,
∴CE=9,
∴BE=CE﹣BC=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,直線經(jīng)過點(diǎn)、.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是直線上方拋物線上的一動點(diǎn),求面積的最大值并求出此時點(diǎn)的坐標(biāo);
(3)過點(diǎn)的直線交直線于點(diǎn),連接,當(dāng)直線與直線的一個夾角等于的3倍時,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,弦AB的長為2,點(diǎn)C是優(yōu)弧AB上的一動點(diǎn),BD⊥BC交直線AC于點(diǎn)D,當(dāng)點(diǎn)C從△ABC面積最大時運(yùn)動到BC最長時,點(diǎn)D所經(jīng)過的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點(diǎn)D,連接AC,CD.則下列結(jié)論中錯誤的是( )
①AC=CD;②AD=BD;③+=;④CD平分∠ACB
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀,我們可以用換元法解簡單的高次方程,解方程x4﹣3x2+2=0時,可設(shè)y=x2,則原方程可比為y2+3y+2=0,解之得y1=2,y2=1,當(dāng)y1=2時,則x2=2,即x1=,x2=﹣;當(dāng)y2=1時,即x2=1,則x1=1,x2=﹣1,故原方程的解為x1=,x2=﹣,x3=1,x4=﹣1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2+2x2﹣3=0,設(shè)y=2x2+1,則原方程可化為_______.
(2)仿照上述解法解方程:(x2﹣2x)2﹣3x2+6x=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,弦AB=,BC=,AB,BC在圓心O的兩側(cè),弧AC上有一動點(diǎn)D,AE⊥BD于點(diǎn)E,當(dāng)點(diǎn)D從點(diǎn)C運(yùn)動到點(diǎn)A時,則點(diǎn)E所經(jīng)過的路徑長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形MNPQ中,動點(diǎn)R從點(diǎn)N出發(fā),沿著N-P-Q-M方向移動至M停止,設(shè)R移動路程為x,MNR面積為y,那么y與x的關(guān)系如圖②,下列說法不正確的是( )
A.當(dāng)x=2時,y=5B.矩形MNPQ周長是18
C.當(dāng)x=6時,y=10D.當(dāng)y=8時,x=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)競賽共有3道判斷題,認(rèn)為正確的寫“”,錯誤的寫“”,小明在做判斷題時,每道題都在“”或“”中隨機(jī)寫了一個.
(1)小明做對第1題的概率是 ;
(2)求小明這3道題全做對的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com