分析 (1)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;
(2)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把x=-3代入計算即可求出值.
解答 解:(1)方程兩邊同乘(4-x ),得(x-3)-(4-x)=-1,
解得 x=3,
經(jīng)檢驗x=3是分式方程的解;
(2)原式=$\frac{3x+4-2x-2}{(x+1)(x-1)}$•$\frac{(x-1)^{2}}{x+2}$=$\frac{x+2}{(x+1)(x-1)}$•$\frac{(x-1)^{2}}{x+2}$=$\frac{x-1}{x+1}$,
當x=-3時,原式=2.
點評 此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
x | -2 | -$\frac{3}{2}$ | -1 | -$\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{2}$ | 1 | 2 | 3 | 4 | … |
y | 0 | -$\frac{{\sqrt{2}}}{3}$ | -1 | -$\sqrt{6}$ | $\sqrt{21}$ | $\sqrt{10}$ | $\sqrt{3}$ | m | $\frac{{\sqrt{5}}}{3}$ | $\frac{{\sqrt{6}}}{4}$ | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com