【題目】如圖,在邊長為4的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q.
(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;
(2)當點P在AB上運動到什么位置時,△ADQ的面積是正方形ABCD面積的;
(3)若點P從點A運動到點B,再繼續(xù)在BC上運動到點C,在整個運動過程中,當點P運動到什么位置時,△ADQ恰為等腰三角形.
【答案】(1)證明見解析;(2)AP=2;(3)P在B點,C點,或在CP=4(-1)處,△ADQ是等腰三角形.
【解析】
試題分析:(1)可由SAS求得△ADQ≌△ABQ;
(2)過點Q作QE⊥AD于E,QF⊥AB于F,則QE=QF,若△ADQ的面積是正方形ABCD面積的,則有S△ADQ=ADQE=S正方形ABCD,求得OE的值,再利用△DEQ∽△DAP有,解得AP值;
(3)點P運動時,△ADQ恰為等腰三角形的情況有三種:有QD=QA或DA=DQ或AQ=AD.由正方形的性質知,①當點P運動到與點B重合時,QD=QA,此時△ADQ是等腰三角形,②當點P與點C重合時,點Q與點C也重合,此時DA=DQ,△ADQ是等腰三角形,③當AD=AQ=4時,有CP=CQ,CP=AC-AD而由正方形的對角線的性質得到CP的值.
試題解析:(1)在正方形ABCD中,
無論點P運動到AB上何處時,都有
AD=AB,∠DAQ=∠BAQ,AQ=AQ,
∴△ADQ≌△ABQ;
(2)△ADQ的面積恰好是正方形ABCD面積的時,
過點Q作QE⊥AD于E,QF⊥AB于F,則QE=QF,
∵在邊長為4的正方形ABCD中,
∴S正方形ABCD=16,
∴AD×QE=S正方形ABCD=×16=,
∴QE=,
∵EQ∥AP,
∴△DEQ∽△DAP,
∴,即,
解得AP=2,
∴AP=2時,△ADQ的面積是正方形ABCD面積的;
(3)若△ADQ是等腰三角形,則有QD=QA或DA=DQ或AQ=AD,
①當AD=DQ時,則∠DQA=∠DAQ=45°
∴∠ADQ=90°,P為C點,
②當AQ=DQ時,則∠DAQ=∠ADQ=45°,
∴∠AQD=90°,P為B,
③AD=AQ(P在BC上),
∴CQ=AC-AQ=BC-BC=(-1)BC
∵AD∥BC
∴,即可得=1,
∴CP=CQ=(-1)BC=4(-1)
綜上,P在B點,C點,或在CP=4(-1)處,△ADQ是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】某市規(guī)定每月用水18噸以內(nèi)(包括18噸)的用戶,每噸收水費a元:一個月用水超過18噸的用戶,18噸水仍按每噸a元收費,超過18噸的部分,按每噸b元(ba)收費.設一戶居民每月用水x噸,應收水費y元,y與x之間的函數(shù)關系如圖;
(1)求a的值,某戶居民上月用水10噸,應收水費多少元;
(2)求b的值,并寫出當x18時,y與x之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為舉辦校園文化藝術節(jié),甲、乙兩班準備給合唱同學購買演出服裝(一人一套),兩班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供貨商給出的演出服裝的價格表:
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
如果兩班單獨給每位同學購買一套服裝,那么一共應付5020元.
(1)甲、乙兩班聯(lián)合起來給每位同學購買一套服裝,比單獨購買可以節(jié)省多少錢?
(2)甲、乙兩班各有多少名同學?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線相交于點O,且AD>AB,過點O作OE⊥AC交AD于點E,連接CE.若平行四邊形ABCD的周長為20,則△CDE的周長是( 。
A. 10B. 11C. 12D. 13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(8,0)及在第一象限的動點P(x,y),且x+y=10,設△OPA的面積為S
(1)求S關于x的函數(shù)表達式;
(2)求x的取值范圍;
(3)求S=12時P點坐標;
(4)畫出函數(shù)S的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c經(jīng)過A、B、C三點,已知B(4,0),C(2,﹣6).
(1)求該拋物線的解析式和點A的坐標;
(2)點D(m,n)(﹣1<m<2)在拋物線圖象上,當△ACD的面積為時,求點D的坐標;
(3)在(2)的條件下,設拋物線的對稱軸為l,點D關于l的對稱點為E,能否在拋物線圖象和l上分別找到點P、Q,使得以點D、E、P、Q為頂點的四邊形為平行四邊形?若能,求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點D為BC的中點,點E在AC上,將△CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結AD,則下列結論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
(4)△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某區(qū)為調(diào)查學生的視力變化情況,從全區(qū)九年級學生中抽取了部分學生,統(tǒng)計了每個人連續(xù)三年視力檢查的結果,并將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖和扇形統(tǒng)計圖如下:
解答下列問題:
(1)該區(qū)共抽取了多少名九年級學生?
(2)若該區(qū)共有9萬名九年級學生,請你估計2018年該區(qū)視力不良(4.9以下)的該年級學生大有多少人?
(3)扇形統(tǒng)計圖中B的圓心角度數(shù)為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com