【題目】如圖所示,四邊形ABCD是正方形,E是CD的中點,P是BC邊上的一點,下列條件:;;是BC的中點;::3,其中能推出∽的有
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】
根據四邊形ABCD為正方形,可得AB=BC=CD,∠B=∠C=90°,由于E為CD中點,所以CD=2CE,即AB=BC=2CE, ①當∠APB=∠EPC時,結合∠B=∠C,利用兩角分別對應相等的兩三角形相似,可判定△ABP∽△ECP, ②當∠APE=∠APB≠60°時,則有∠APB≠∠EPC,所以不能推出△ABP∽△ECP, ③當P是BC中點時,則有BC=2PC,可知PC=CE,則△PCE為等腰直角三角形,而BP≠AB,即△ABP不是等腰直角三角形,故不能推出△ABP∽△ECP,④當BP:BC=2:3時,則有BP:PC=2:1,且AB:CE=2:1,結合∠B=∠C,根據兩邊對應成比例且夾角相等的兩個三角形相似,可判定△ABP∽△ECP相似
∵四邊形ABCD為正方形,
∴AB=BC=CD,∠B=∠C=90°,
∵E為CD中點,
∴CD=2CE,即AB=BC=2CE,
①當∠APB=∠EPC時,結合∠B=∠C,可推出△ABP∽△ECP,
②當∠APE=∠APB≠60°時,則有∠APB≠∠EPC,所以不能推出△ABP∽△ECP,
③當P是BC中點時,則有BC=2PC,可知PC=CE,則△PCE為等腰直角三角形,而BP≠AB,即△ABP不是等腰直角三角形,故不能推出△ABP∽△ECP,
④當BP:BC=2:3時,則有BP:PC=2:1,且AB:CE=2:1,結合∠B=∠C,
可推出△ABP∽△ECP相似,故選B.
科目:初中數學 來源: 題型:
【題目】如圖,物理教師為同學們演示單擺運動,單擺左右擺動中,在OA的位置時俯角∠EOA=30°,在OB的位置時俯角∠FOB=60°,若OC⊥EF,點A比點B高7cm.
(1)求單擺的長度;
(2)求從點A擺動到點B經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點E為CD的中點,射線BE交AD的延長線于點F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=3cm,∠B=30°,點D在BC邊上由C向B勻速運動(D不與B、C重合),勻速運動速度為1cm/s,連接AD,作∠ADE=30°,DE交線段AC于點E.
(1)在此運動過程中,∠BDA逐漸變 (填“大”或“小”);D點運動到圖1位置時,∠BDA=75°,則∠BAD= .
(2)點D運動3s后到達圖2位置,則CD= .此時△ABD和△DCE是否全等,請說明理由;
(3)在點D運動過程中,△ADE的形狀也在變化,判斷當△ADE是等腰三角形時,∠BDA等于多少度(請直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將函數y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮同學為了鞏固自己對平行四邊形判定知識的掌握情況,設計了一個游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質地及背面顏色都相同的卡片上,卡片如圖,他將卡片正面朝下反扣在桌面上,洗勻后從中隨機抽取兩張,然后根據卡片上的兩個條件判斷四邊形ABCD是否為平行四邊形,請你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、c、d表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探究與發(fā)現(xiàn):在△ABC中,∠B=∠C,點D在BC邊上(點B、C除外),點E在AC邊上,且∠ADE=∠AED,連接DE.
(1)如圖①,若∠B=∠C=45,
①當∠BAD=60時,求∠CDE的度數;
②試猜想∠BAD與∠CDE的數量關系,并說明理由.
(2)深入探究:如圖②,若∠B=∠C,但∠C≠45,其他條件不變,試探究∠BAD與∠CDE的數量關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com