一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.
【答案】分析:(1)根據(jù)“按定價40元出售,每月可銷售20萬件”及“經(jīng)市場調研,每降價1元,月銷售量可增加2萬件”可列出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系式;
(2)由月銷售利潤=(銷售單價x-成本單價18)•月銷售量y(萬件),列出函數(shù)關系式;
(3)求月銷售利潤z=480萬元時,銷售單價x的值,就可確定范圍了.
解答:解:(1)由題意得:
y=20+2(40-x)
=-2x+100.
∴y與x的函數(shù)關系式為y=-2x+100;

(2)z=(x-18)y
=(x-18)(-2x+100)
=-2x2+136x-1800,
∴z與x的函數(shù)關系式為z=-2x2+136x-1800;

(3)令z=480,得480=-2x2+136x-1800,
整理得x2-68x+1140=0,
解得x1=30,x2=38,
將二次函數(shù)解析式變形為z=-2(x-34)2+512畫出大致圖象如圖,
由圖象可知,要使月銷售利潤不低于480萬元,產(chǎn)品的銷售單價應在30元到38元之間(即30≤x≤38).
點評:本題考查用列一次函數(shù)、二次函數(shù)及解決實際問題的能力.此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價30元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,每降價1元,月銷量可增加2萬件.銷售期間,要求銷售單價不低于成本單價,且獲利不得高于60%
(1)求出月銷量y(萬件)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出月銷售利潤w(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關系式;
(3)請你根據(jù)(2)中的函數(shù)關系式及其大致圖象幫助公司確定產(chǎn)品銷售單價的范圍,使月銷售利潤不低于210萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件,為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調研,每降價1元,月銷售量可增加2萬件,設每件產(chǎn)品售價為x元.
(1)設月銷售利潤W(萬元),請用含有銷售單價x(元)的代數(shù)式表示w;
(2)為獲得最大銷售利潤,每件產(chǎn)品的售價應為多少元?此時,最大月銷售利潤是多少?
(3)為使月銷售利潤達到480萬元,且按物價部門規(guī)定此類商品每件的利潤率不得高于80%,每件產(chǎn)品的售價為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

科目:初中數(shù)學 來源:第26章《二次函數(shù)》常考題集(18):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調研,每降價1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價-成本價)與銷售單價x(元)之間的函數(shù)關系式(不必寫x的取值范圍);
(3)請你通過(2)中的函數(shù)關系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

同步練習冊答案