【題目】如圖,在△ABC中,∠C=90°,AC=BC=5,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF,在此運(yùn)動變化的過程中,△CEF周長的最小值是 .
【答案】5+
【解析】解:連接CD; ∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
在△ADE與△CFD中, ,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形,
∵∠C=90°,AC=BC=5,
∴AB=5 ,
∴當(dāng),△CEF周長的最小時,EF取最小值,
∴E、F分別為AC、BC中點(diǎn)時,EF的值最小,
∴EF= AB= ,
∴△CEF周長的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+ ;
所以答案是:5+ .
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)27﹣19+(﹣7)﹣32;
(2)(﹣7)÷(﹣ )×(﹣ );
(3)( ﹣ + )×(﹣36)
(4)﹣14﹣ ×[2﹣(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點(diǎn),連接OC.過點(diǎn)C作CD⊥AB,垂足為D, 過點(diǎn)B作BM∥OC,在射線BM上取點(diǎn)E, 使BE=BD,連接CE.
(1) 當(dāng)∠COB=60° 時,直接寫出陰影部分的面積;
(2) 求證:CE是 ⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是
A. a3·a2=a6 B. (x3)3=x6
C. x5+x5=x10 D. (-ab)5÷(-ab)2=-a3b3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
小明遇到這樣一個問題:如圖1,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠GHN=∠DEP=45°時,求正方形MNPQ的面積.
小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個全等的等腰直角三角形(如圖2) .
請回答:
(1)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙不重疊),則這個新正方形的邊為 ;
(2)求正方形MNPQ的面積.
(3)參考小明思考問題的方法,解決問題:
如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,n),B(m,n)(m>2),D(p,q)(q<n),點(diǎn)B,D在直線y=x+1上.四邊形ABCD的對角線AC,BD相交于點(diǎn)E,且AB∥CD,CD=4,BE=DE,△ABD的面積是4.求證:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程(a﹣2)x|a|﹣1+7=0是關(guān)于x的一元一次方程,則a的值為( 。
A. 2 B. ﹣2 C. ±2 D. 無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com