【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

(1)求點B的坐標(biāo);

(2)求證:四邊形ABCE是平行四邊形;

(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

【答案】(1)B的坐標(biāo)為(,4);(2)證明見解析;(3)1

【解析】

試題分析:(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識,即可求得AB與OA的長,即可求得點B的坐標(biāo);

(2)首先可得CE∥AB,D是OB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;

(3)首先設(shè)OG的長為x,由折疊的性質(zhì)可得:AG=CG=8﹣x,然后根據(jù)勾股定理即可求得OG的長.

試題解析:(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OBcos30°==,AB=OBsin30°=8×=4,∴點B的坐標(biāo)為(,4);

(2)證明:∵∠OAB=90°,∴AB⊥x軸,∵y軸⊥x軸,∴AB∥y軸,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4,∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等邊三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四邊形ABCE是平行四邊形;

(3)解:設(shè)OG的長為x,∵OC=OB=8,∴CG=8﹣x,由折疊的性質(zhì)可得:AG=CG=8﹣x,在Rt△AOG中,,即,解得:x=1,即OG=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知樣本x1x2,…,xn的方差是2,則樣本3x1+5,3x2+5,…,3xn+5的方差是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形三個內(nèi)角的度數(shù)之比為123,最短的邊長是5cm,則其最長的邊的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點,將OCD沿直線OD折疊后得到OGD,延長OG交AB于點E,連接DE,則點G的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.

(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時,PQ∥OC?

(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;

②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列選項中正確的是( )
A.27的立方根是±3
B.的平方根是±4
C.9的算術(shù)平方根是3
D.立方根等于平方根的數(shù)是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣ x+4與x軸交于點A,與y軸交于點B,菱形ABCD如圖放置在平面直角坐標(biāo)系中,其中點D在x軸負(fù)半軸上,直線y=x+m經(jīng)過點C,交x軸于點E.
①請直接寫出點C、點D的坐標(biāo),并求出m的值;
②點P(0,t)是線段OB上的一個動點(點P不與0、B重合),
經(jīng)過點P且平行于x軸的直線交AB于M、交CE于N.設(shè)線段MN的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍);
③當(dāng)t=2時,線段MN,BC,AE之間有什么關(guān)系?(寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 =3,3a+b﹣1的平方根是±4,c是 的整數(shù)部分,求a+2b+c的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a3﹣4a2b+4ab2=

查看答案和解析>>

同步練習(xí)冊答案