已知某二次函數(shù)的圖象如圖所示.
(1)求這個二次函數(shù)的解析式;
(2)利用圖象回答:當(dāng)x取何值時,y>0?
分析:(1)利用交點式求二次函數(shù)的解析式:設(shè)二次函數(shù)y=a(x-1)(x-2),然后把(0,2)代入可求出a的值;
(2)觀察函數(shù)圖象得到當(dāng)x<1或x>2時,函數(shù)圖象都在x軸上方,即y>0.
解答:解:(1)設(shè)二次函數(shù)y=a(x-1)(x-2),
把(0,2)代入得2=a×(-1)×(-2),
解得a=1.
故二次函數(shù)的解析式為y=(x-1)(x-2)=x2-3x+2;

(2)當(dāng)x<1或x>2時,y>0.
點評:本題考查了二次函數(shù)的圖象:二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=-
b
2a
;拋物線與y軸的交點坐標(biāo)為(0,c).也考查了待定系數(shù)法求二次函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別為(-1,0)、(0,-
3
),點B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點,且它的對稱軸為直線x=1,點P為直線BC下方的二次函數(shù)圖象上的一個動點(點P與B、C不重合),過點P作y軸的平行線交BC于點F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長;
(3)求△PBC面積的最大值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別為(-1,0)、(0,-
3
),點B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點,且它的對稱軸為直線x=1.
(1)求該二次函數(shù)的解析式;
(2)點D為直線BC下方的二次函數(shù)圖象上的一個動點(點D與B、C不重合),過點D作y軸的平行線交BC于點E,設(shè)點D的橫坐標(biāo)為m,DE=n,n與m的函數(shù)關(guān)系式;
(3)點M在y軸上,點N在拋物線上.是否存在以M、N、A、B四點為頂點的四邊形為平行四邊形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別為(-1,0)、(0,-
3
),點B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點,且它的對稱軸為直線x=1,點P為直線BC下方的二次函數(shù)圖象上的一個動點(點P與B、C不重合),過點P作x軸的平行線交BC于點F.
(1)求該二次函數(shù)的解析式;
(2)求直線BC的解析式;
(3)若設(shè)點P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長;
(4)求△PBC面積的最大值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知某二次函數(shù)的圖象如圖所示,求這個二次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案