如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標分別為-1,3,與y軸負半軸交于點C.下面五個結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當a=
1
2
時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有三個.那么,其中正確的結(jié)論是______.
①∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴AB=4,
∴對稱軸x=-
b
2a
=1,
即2a+b=0;
②由拋物線的開口方向向上可推出a>0,而-
b
2a
>0
∴b<0,
∵對稱軸x=1,
∴當x=1時,y<0,
∴a+b+c<0;

③∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴當x=2時y<0,
∴4a+2b+c<0,
又∵b<0,
∴4a+b+c<0;

④要使△ABD為等腰直角三角形,必須保證D到x軸的距離等于AB長的一半;
D到x軸的距離就是當x=1時y的值的絕對值.
當x=1時,y=a+b+c,
即|a+b+c|=2,
∵當x=1時y<0,
∴a+b+c=-2
又∵圖象與x軸的交點A,B的橫坐標分別為-1,3,
∴當x=-1時y=0即a-b+c=0;
x=3時y=0.
∴9a+3b+c=0,
解這三個方程可得:b=-1,a=
1
2
,c=-
3
2
;

⑤要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,
當AB=BC=4時,
∵AO=1,△BOC為直角三角形,
又∵OC的長即為|c|,
∴c2=16-9=7,
∵由拋物線與y軸的交點在y軸的負半軸上,
∴c=-
7
,
與2a+b=0、a-b+c=0聯(lián)立組成解方程組,解得a=
7
3
;
同理當AB=AC=4時
∵AO=1,△AOC為直角三角形,
又∵OC的長即為|c|,
∴c2=16-1=15,
∵由拋物線與y軸的交點在y軸的負半軸上,
∴c=-
15

與2a+b=0、a-b+c=0聯(lián)立組成解方程組,解得a=
15
3
;
同理當AC=BC時
在△AOC中,AC2=1+c2,
在△BOC中BC2=c2+9,
∵AC=BC,
∴1+c2=c2+9,此方程無解.
經(jīng)解方程組可知只有兩個a值滿足條件.
故正確的有①④.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:
①b2-4ac>0;②abc>0;
③8a+c>0;④9a+3b+c<0.
其中,正確結(jié)論的個數(shù)是______個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①b2>4ac;
②abc>0;
③2a-b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是______.(填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知拋物線y=ax2+bx+c(a≠0)如圖.則abc______0,a-b+c______0,b2-4ac______0.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-1,2)且與x軸交點的橫坐標分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①b<0;②a+b+c<0;③4a-2b+c<0;④2a-b<0,其中正確的有______.(填代號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:其中正確的是( 。
①a>0;②2a+b=0;③a+b-c>0;④當-1<x<3時,y<0.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+1(a≠0)的圖象的頂點在第一象限,且過點(-1,0).設(shè)t=a+b+1,則t值的變化范圍是( 。
A.0<t<1B.0<t<2C.1<t<2D.-1<t<1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①4a-b<0②abc<0③a+b+c<0④a-b+c>0⑤4a+2b+c>0,其中錯誤的個數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論錯誤的是( 。
A.b2-4ac>0B.a(chǎn)-b+c<0C.a(chǎn)bc<0D.2a+b>0

查看答案和解析>>

同步練習冊答案