如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.點P從點B出發(fā)沿折線段BA-AD-DC以每秒5個單位長的速度向點C勻速運動;點Q從點C出發(fā)沿線段CB方向以每秒3個單位長的速度勻速運動,過點Q向上作射線QKIBC,交折線段CD-DA-AB于點E.點P、Q同時開始運動,當(dāng)點P與點C重合時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).
(1)當(dāng)點P到達(dá)終點C時,求t的值,并指出此時BQ的長;
(2)當(dāng)點P運動到AD上時,t為何值能使PQ∥DC?
(3)t為何值時,四點P、Q、C、E成為一個平行四邊形的頂點?
(4)△PQE能為直角三角形時t的取值范圍
0<t≤25且t≠
155
8
或t=35
0<t≤25且t≠
155
8
或t=35
.(直接寫出結(jié)果)(注:備用圖不夠用可以另外畫)
分析:(1)把BA,AD,DC它們的和求出來再除以速度每秒5個單位就可以求出t的值,然后也可以求出BQ的長;
(2)如圖1,若PQ∥DC,又AD∥BC,則四邊形PQCD為平行四邊形,從而PD=QC,用t分別表示QC,BA,AP,然后就可以得出關(guān)于t的方程,解方程就可以求出t;
(3)分情況討論,當(dāng)P在BA上運動時,E在CD上運動.0≤t≤10,QC的長度≤30,PE的長度>AD=75,QC<PE,此時不能構(gòu)成以P、Q、C、E為頂點的平行四邊形;當(dāng)P點運動到AD上,E在AD上,且P在E的左側(cè)時,P、Q、C、E為頂點的四邊形可能是平行四邊形,根據(jù)平行四邊形的性質(zhì)建立方程求出其解就可以得出結(jié)論;當(dāng)P在E點的右側(cè)且在AD上時,t≤25,P、Q、C、E為直角梯形,當(dāng)P在CD上,E在AD上QE與PC不平行,P、Q、C、E不可能為平行四邊形,
(4)①當(dāng)點P在BA(包括點A)上,即0<t≤10時,如圖2.過點P作PG⊥BC于點G,則PG=PB•sinB=4t,又有QE=4t=PG,易得四邊形PGQE為矩形,此時△PQE總能成為直角三角形
②當(dāng)點P、E都在AD(不包括點A但包括點D)上,即10<t≤25時,如圖1.由QK⊥BC和AD∥BC可知,此時,△PQE為直角三角形,但點P、E不能重合,即5t-50+3t-30≠75,解得t≠
155
8
.③當(dāng)點P在DC上(不包括點D但包括點C),即25<t≤35時,如圖3.由ED>25×3-30=45,
可知,點P在以QE=40為直徑的圓的外部,故∠EPQ不會是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是銳角.對于∠PQE,
∠PQE≤∠CQE,只有當(dāng)點P與C重合,即t=35時,如圖4,∠PQE=90°,△PQE為直角三角形.
解答:解:(1)t=(50+75+50)÷5=35(秒)時,點P到達(dá)終點C,
此時,QC=35×3=105,
∴BQ的長為135-105=30.
(2)如圖1,若PQ∥DC,
∵AD∥BC,
∴四邊形PQCD為平行四邊形,
∴PD=QC,
由QC=3t,BA+AP=5t
得50+75-5t=3t,
解得t=
125
8

∴當(dāng)t=
125
8
時,PQ∥DC.
(3)當(dāng)P在BA上運動時,E在CD上運動.0≤t≤10,QC的長度≤30,PE的長度>AD=75,QC<PE,此時不能構(gòu)成以P、Q、C、E為頂點的平行四邊形;
當(dāng)P點運動到AD上,E在AD上,且P在E的左側(cè)時,P、Q、C、E為頂點的四邊形是平行四邊形,如圖5,
∴PE=QC.
如圖1,作DH⊥BC于H,AG⊥BC于G,
∠AGB=∠DHC=90°
∴四邊形AGHD是矩形,
∴GH=AD=75.AG=DH.
在△ABG和△DCH中,
AB=DC
AG=DH
∠AGB=∠DHC
,
∴△ABG≌△DCH,
∴BG=CH=
1
2
(135-75)=30,
∴ED=3(t-10)
∵AP=5t-50,
∴PE=75-(5t-50)-3(t-10)=155-8t.
∵QC=3t,
∴155-8t=3t,
t=
155
11

當(dāng)P在E點的右側(cè)且在AD上時,t≤25,P、Q、C、E為直角梯形,
當(dāng)P在CD上,E在AD上QE與PC不平行,P、Q、C、E不可能為平行四邊形,
∴t=
155
11

(4)①當(dāng)點P在BA(包括點A)上,即0<t≤10時,如圖2.
過點P作PG⊥BC于點G,則PG=PB•sinB=4t,
又有QE=4t=PG,易得四邊形PGQE為矩形,此時△PQE總能成為直角三角形.
②當(dāng)點P、E都在AD(不包括點A但包括點D)上,即10<t≤25時,如圖1.
由QK⊥BC和AD∥BC可知,此時,△PQE為直角三角形,但點P、E不能重合,
即5t-50+3t-30≠75,解得t≠
155
8
.③當(dāng)點P在DC上(不包括點D但包括點C),
即25<t≤35時,如圖3.由ED>25×3-30=45,
可知,點P在以QE=40為直徑的圓的外部,故
∠EPQ不會是直角.
由∠PEQ<∠DEQ,可知∠PEQ一定是銳角.
對于∠PQE,∠PQE≤∠CQE,只有當(dāng)點P與C
重合,即t=35時,如圖4,∠PQE=90°,△PQE
為直角三角形.
綜上所述,當(dāng)△PQE為直角三角形時,t的取值范圍是0<t≤25且t≠
155
8
或t=35.
故答案為:0<t≤25且t≠
155
8
或t=35.
點評:本題綜合性很強,考查了全等三角形的判定與性質(zhì)的運用,平行四邊形的性質(zhì)的運用,勾股定理的性質(zhì)的運用及矩形的性質(zhì)的運用,把圖形的變換放在梯形的背景中,利用等腰梯形的性質(zhì)結(jié)合已知條件探究圖形的變換,根據(jù)變換的圖形的性質(zhì)求出運動時間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設(shè)P、Q同時出發(fā)并運動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案