已知:如圖,△ABC中,點(diǎn)D、E、F分別在邊BC、CA、AB上,數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式
(1)若BE平分∠ABC,試說(shuō)明四邊形DBFE的形狀,并加以證明;
(2)若點(diǎn)G為△ABC的重心,且△BCG與△EFG的面積之和為20,求△BCG的面積.

解:(1)四邊形DBFE是菱形.
證明:∵△ABC中,==
∴FE∥BC,DE∥AB,
∴四邊形DBFE是平行四邊形,
又∵BE平分∠ABC,
∴∠FBE=∠DBE,
∵FE∥BC,
∴∠FEB=∠DBE,
∴∠FBE=∠FEB,
∴BF=EF,
∴四邊形DBFE是菱形;

(2)∵FE∥BC,
∴△EFG∽△BCG,
=(2,
∵點(diǎn)G為△ABC的重心,
=,
=(2=,
∴S△BCG=4S△EFG
∵S△EFG+S△BCG=20,
∴S△BCG=16.
分析:(1)由△ABC中,==,可得FE∥BC,DE∥AB,即可判定四邊形DBFE是平行四邊形,又由BE平分∠ABC,可證得BF=EF,即可判定四邊形DBFE是菱形;
(2)由FE∥BC,可得△EFG∽△BCG,又由相似三角形面積的比等于相似比的平方,可得=(2,然后由點(diǎn)G為△ABC的重心,可得FG:GC=1:2,可得S△BCG=4S△EFG.又由△BCG與△EFG的面積之和為20,即可求得答案.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、三角形重心的性質(zhì)以及菱形的判定.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案