(2013•濟(jì)南)若直線y=kx與四條直線x=1,x=2,y=1,y=2圍成的正方形有公共點(diǎn),則k的取值范圍是
1
2
≤k≤2
1
2
≤k≤2
分析:根據(jù)題意直線y=kx與直線x=1的交點(diǎn)最高為(1,2),與x=2的交點(diǎn)最低為(2,1),然后求解即可.
解答:解:∵直線y=kx與四條直線x=1,x=2,y=1,y=2圍成的正方形有公共點(diǎn),
∴直線y=kx與直線x=1的交點(diǎn)最高為(1,2),與x=2的交點(diǎn)最低為(2,1),
1
2
≤k≤2.
故答案為:
1
2
≤k≤2.
點(diǎn)評:本題考查了一次函數(shù)的性質(zhì),讀懂題目信息,理解與正方形的公共點(diǎn)的極點(diǎn)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖,平行四邊形OABC的頂點(diǎn)B,C在第一象限,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)D為邊AB的中點(diǎn),反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過C,D兩點(diǎn),若∠COA=α,則k的值等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖,D,E分別是△ABC邊AB,BC上的點(diǎn),AD=2BD,BE=CE,設(shè)△ADC的面積為S1,△ACE的面積為S2,若S△ABC=6,則S1-S2的值為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)如圖1,拋物線y=-
23
x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB與點(diǎn)D,過點(diǎn)B作直線l∥AC,與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點(diǎn)N,點(diǎn)P,Q為射線NB上的兩個(gè)動點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南一模)在某市開展城鄉(xiāng)綜合治理的活動中,需要將A、B、C三地的垃圾50立方米、40立方米、50立方米全部運(yùn)往垃圾處理場D、E兩地進(jìn)行處理.已知運(yùn)往D地的數(shù)量比運(yùn)往E地的數(shù)量的2倍少10立方來.
(1)求運(yùn)往D、E兩地的數(shù)量各是多少立方米?
(2)若A地運(yùn)往D地a立方米(a為整數(shù)),B地運(yùn)往D地30立方米.C地運(yùn)往D地的數(shù)量小于A地運(yùn)往D地的2倍.其余全部運(yùn)往E地.且C地運(yùn)往E地不超過12立方米.則A、C兩地運(yùn)往D、E兩地有哪幾種方案?

查看答案和解析>>

同步練習(xí)冊答案