【題目】如圖,若在△ABC 的外部作正方形 ABEF 和正方形 ACGH, 求證:△ABC 的高線 AD 平分線段 FH

【答案】見解析.

【解析】

HHQADQ,FFPADP,分別證明△ADC≌△QAH,△ABD≌△FAP得出FP=QH,證明△FMP≌△HMQ,得出FM=MH,從而得出結(jié)論.

HHQADQ,FFPADP,

ACGH為正方形

∴∠QAH+DAC=90°, AH=AC,

AD為△ABC的高線

∴∠ADC=90°,DAC+DCA=90°,

∴∠QAH=DCA

HQAD

AQH=90°,

∴∠AQH=ADC

AH=AC,∠QAH=DCA,∠AQH=ADC

∴△ADC≌△QAH

QH=AD,

同理可證,ABD≌△FAP,

FP=AD

QH= FP,

又∵∠FPM=AQH=90°,FMP=QMH

∴△FMP≌△HMQ,

FM=MH,

∴△ABC的高線AD所在直線平分線段FH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校在休息日用藥熏消毒法對教室進行消毒. 已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(mg)與時間t(h)成正比;藥物釋放完畢后,y與t之間的函數(shù)解析式為y=(a為常數(shù)),如圖所示. 根據(jù)圖中提供的信息,解答下列問題:

(1)寫出從釋放藥物開始,y與t之間的兩個函數(shù)解析式及相應(yīng)的自變量取值范圍;

(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.25mg以下時,學(xué)生方可進入教室,那么藥物釋放開始,至少需要經(jīng)過多少小時,學(xué)生才能進入教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;

(2)圖②中C級所占的圓心角的度數(shù)是__________;

(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該市近20000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC=10,AB=,∠ABC=30°,點P在直線AC上,點P到直線AB的距離為1,則CP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺GH型產(chǎn)品由4個G型裝置和3個H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請列出二元一次方程組解答此問題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補充一些新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4個G型裝置.1.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補充m名新工人,求x的值(用含m的代數(shù)式表示)2.請問至少需要補充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,、在同一直線上,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點E為ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點Dx正半軸上一動點

(1)A、B兩點的坐標

(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點FCD的平行線交y軸于點H,且∠AFH=45°判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明

(3)AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標為(﹣32),BCy軸于點C,且OC=6BC

1)求雙曲線和直線的解析式;

2)直接寫出不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案