【題目】如圖,在線段的同側(cè),,.

(1)如圖,已知,,求的長(zhǎng);

(2)如圖,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)、的對(duì)應(yīng)點(diǎn)分別是點(diǎn)、,連接.過(guò)點(diǎn)于點(diǎn),交于點(diǎn),求證:.

【答案】(1);(2)詳見(jiàn)解析.

【解析】

(1)在Rt△ABC中,利用特殊角的三角函數(shù)值求得BC的長(zhǎng),然后在Rt△BCD中,利用勾股定理即可求得答案;

(2)先根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠AFB=∠BDC,∠FAB=∠DCB=90°,BF=BD,BC=AB,進(jìn)而推出AF∥BC,再根據(jù)平行線的性質(zhì)的性質(zhì)得到∠FBC =∠BDQ,則通過(guò)“角角邊”證明△FBC≌△BDQ,得到FC=BQ,BC=DQ,再通過(guò)“角角邊”證明△ABM≌△DQM,得到BM=MQ=BQ=FC,即可得證.

解(1)∵△ABC為直角三角形,且AB=BC,

∴△ABC為等腰直角三角形,

∴BC=AC·sin45°=6·=6,

Rt△BCD中,

CD===

(2)

如圖,分別延長(zhǎng)BM、CD交于點(diǎn)Q,

∵∠BCQ=90°,BH⊥EC,

∴∠Q=∠BCH,

又∵將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,

∴∠AFB=∠BDC,∠FAB=∠DCB=90°,BF=BD,BC=AB,

∵∠ABC=90°,

∴AF∥BC,

∴∠FBC=180°﹣∠AFB=180°﹣∠BDC=∠BDQ,

∴△FBC≌△BDQ(AAS),

∴FC=BQ,BC=DQ,

∵BC=AB,

∴DQ=AB,

∵AB∥CD,

∴∠BAD=∠QDA,

∴△ABM≌△DQM(AAS),

∴BM=MQ=BQ=FC,

∴CF=2BM.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“經(jīng)過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.

已知:P為外一點(diǎn).求作:經(jīng)過(guò)P點(diǎn)的切線.作法:如圖,(1)連結(jié)OP;(2)以O(shè)P為直徑作圓,與交于C、D兩點(diǎn).(3)作直線PC、PD.則直線PC、PD就是所求作經(jīng)過(guò)P點(diǎn)的切線.以上作圖的依據(jù)是:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和媽媽開(kāi)車去中央公園采風(fēng),小明爸爸發(fā)現(xiàn)他們忘記帶畫(huà)筆后立即開(kāi)車追趕他們.假設(shè)媽媽和爸爸的車在同一直線公路上勻速行駛,當(dāng)爸爸的車追上媽媽的車后,兩車停下來(lái),爸爸把畫(huà)筆交給小明.然后小明和媽媽開(kāi)車以原來(lái)速度的倍繼續(xù)前行,爸爸則以來(lái)時(shí)一半的速度沿原路回家.設(shè)小明爸爸開(kāi)車的時(shí)間為(秒),兩車間的距離為(米),關(guān)于的部分函數(shù)關(guān)系如圖所示,當(dāng)小明爸爸回到家時(shí),小明和媽媽正好行駛了全程的,則小明家離中央公園的距離為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2;以此進(jìn)行下去,則正方形A2019B2019C2019D2019的面積為( 。

A.52017B.52018C.52019D.52020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E,F分別是AB,BC,CA的中點(diǎn),AP是邊BC上的高

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:∠DEF=DPF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來(lái)的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫(huà)出四邊形TA′B′C′;

(2)寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)稱軸為直線x=1的拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(﹣1,0)

(1)求拋物線的解析式并作出圖象;

(2)點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn),若△PCD是以CD為底的等腰三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案