【題目】已知:如圖,∠XOY=90°,點(diǎn)A、B分別在射線OX、OY上移動(不與點(diǎn)O重合),BE是∠ABY的平分線,BE的反向延長線與∠OAB的平分線相交于點(diǎn)C.
(1)當(dāng)∠OAB=40°時,∠ACB= 度;
(2)隨點(diǎn)A、B的移動,試問∠ACB的大小是否變化?如果保持不變,請給出證明;如果發(fā)生變化,請求出變化范圍.
【答案】(1)45;(2) ∠ACB的大小不發(fā)生變化.
【解析】
(1)先利用角平分線得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性質(zhì)即可得出結(jié)論;
(2)先利用角平分線得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性質(zhì)即可得出結(jié)論.
解:(1)∵∠XOY=90°,∠OAB=40°,
∴∠ABY=130°,
∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=45°,
故答案為:45;
(2)∠ACB的大小不變化.
理由:∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB,∠EBA=∠YBA,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),
∵∠YBA﹣∠OAB=90°,
∴∠C=×90°=45°,
即:∠ACB的大小不發(fā)生變化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC與BD相交于點(diǎn)O,AB∥CD,AB=CD,則圖中的全等三角形共有( 。
A. 1對B. 2對C. 3對D. 4對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD與CE交于點(diǎn)F,且AD=CD.
(1)求證:△ABD≌△CFD;
(2)已知BC=7,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)作出△ABC關(guān)于y軸對稱的△A′B′C′,并寫出點(diǎn)B′的坐標(biāo);
(3)P是x軸上的動點(diǎn),在圖中找出使△A′BP周長最短時的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時針旋轉(zhuǎn)角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG’是直角時,求 的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF’長的最大值和此時 的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P.
(觀察猜想)
①AE與BD的數(shù)量關(guān)系是 ;
②∠APD的度數(shù)為 .
(數(shù)學(xué)思考)
如圖2,當(dāng)點(diǎn)C在線段AB外時,(1)中的結(jié)論①、②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(拓展應(yīng)用)
如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC=90°,AE=DE,BE=CE,對角線AC、BD交于點(diǎn)P,AC=10,則四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個足球和3個籃球共需340元,購買5個足球和2個籃球共需410元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需購買足球和籃球共96個,并且總費(fèi)用不超過5720元.問最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個兩位數(shù),個位數(shù)比十位數(shù)大2,若把各位數(shù)字和十位數(shù)字對調(diào),則所得的新的兩位數(shù)比原數(shù)的兩倍少17.若設(shè)原數(shù)的個位數(shù)為,十位數(shù)字為,則下列方程組正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點(diǎn)C,然后測出AC,BC的中點(diǎn)M,N,并測量出MN的長為6 m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是
A. AB=12 m B. MN∥AB
C. △CMN∽△CAB D. CM∶MA=1∶2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com