【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(0,2)、(-1,0)、(2,0).
(1)求直線AB的函數(shù)表達式;
(2)直線AB上有一點P,使得△PBC的面積等于9,求點P的坐標;
(3)設點D與A、B、C 點構成平行四邊形,直接寫出所有符合條件的點D的坐標.
【答案】(1)y=2x+2;(2)(2,6)或(-4,-6);(3)(3,2)、(-3,2)、(1,-2)
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)設點P的坐標為(x,2x+2),根據(jù)三角形的面積公式列方程求解即可;
(3)分三種情況求解即可:①當AB、BC為鄰邊時,②當AB為對角線時,③當BC為對角線時.
解:(1)設直線AB的函數(shù)解析式為y=kx+b,
∵直線AB經(jīng)過點A(0,2)、B(-1,0),得
,
解得.
∴直線AB的函數(shù)解析式為y=2x+2;
(2)由題意,設點P的坐標為(x,2x+2),
S△POA=×BC×|py|=×3×|2x+2|=9.
解得x=2或x=-4.
故點P的坐標是(2,6)或(-4,-6);
(3)①當AB、BC為鄰邊時,作D1E⊥BC于E,
∵四邊形ABCD1是平行四邊形,
∴AD1=BC=3,AB=CD1,∠ABC=∠D1CE,
又∵∠AOB=∠D1EC,
∴△AOB≌△D1EC,
∴CE=BO=1,
∴D1(3,2);
同理可求:
②當AB為對角線時,D2(-3,2);
③當BC為對角線時,D3(1,-2);
綜上所述:點D與A、B、C點構成平行四邊形,點D的坐標為(3,2)、(-3,2)、(1,-2).
科目:初中數(shù)學 來源: 題型:
【題目】(8分)某市在道路改造過程中,需要鋪設一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設20米,且甲工程隊鋪設350米所用的天數(shù)與乙工程隊鋪設250米所用的天數(shù)相同.
(1)甲、乙工程隊每天各能鋪設多少米?
(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是;
遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請計算線段CD的長;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;
(2)如圖2所示,當α=45°時,求證:=;
(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關系:=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作AF∥BC,交BE的延長線于點F,連結CF.
(1)求證:① △AEF≌△DEB;② 四邊形ADCF是平行四邊形;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一不透明口袋中裝有個紅球、個白球、個黃球,每個球除顏色外其他均相同.從這個口袋中同時摸出兩個球,發(fā)生概率最小的事件是摸到( )
A. 都是紅球 B. 一個紅球,一個白球
C. 都是白球 D. 一個白球,一個黃球
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知:點P(a,b),P點坐標滿足+|3a﹣2b﹣4|=0將45°角的三角板,直角頂點放在P處,兩邊與坐標軸交于A、B兩點,如圖1,求a、b的值.
(2)將三角板繞P點,順時針旋轉,兩邊與x軸交于B點,與y軸交于A點,求|OA﹣OB|的值.
(3)如圖3,若Q是線段AB上一動點,C為AQ中點,PR⊥PQ且PR=PQ,連BR,請同學們判斷線段BR與PC之間的關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點分別為D、F,CD垂直于地面,FE⊥AB于點E.點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學的家與學校的距離均為.甲同學先步行,然后乘公交車去學校;乙同學騎自行車去學校.已知乙同學騎自行車的速度是甲同學步行速度的一倍,公交車的速度是乙同學騎自行車速度的倍.甲、乙兩名同學同時從家出發(fā)去學校,結果甲同學比乙同學早到.
(1)解:設乙同學騎自行車的速度為.完成表格:
乙同學 | 甲同學 | ||
騎自行車 | 步行 | 乘公交車 | |
路程 | |||
時間 |
(2)求乙同學騎自行車的速度.
(3)當甲同學到達學校時,乙同學離學校還有多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com