【題目】如圖,直線分別與x軸,y軸相交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0)
(1)求k的值;
(2)過線段AB上一點(diǎn)P(不與端點(diǎn)重合)作x軸,y軸的垂線,乖足分別為M,N.當(dāng)長(zhǎng)方形PMON的周長(zhǎng)是10時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)k=﹣2;(2)點(diǎn)P的坐標(biāo)為(3,2).
【解析】試題分析:(1)因?yàn)橹本分別與軸, 軸相交于兩點(diǎn),O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為即直線經(jīng)過所以 解之即可;
(2)因?yàn)樗倪呅?/span>是矩形,點(diǎn)P在直線上,設(shè) 則 而 由此即可得到關(guān)于的方程,解方程即可求得.
試題解析:(1)∵直線y=kx+8經(jīng)過A(4,0),
∴0=4k+8,
∴k=2.
(2)∵點(diǎn)P在直線y=2x+8上,設(shè)P(t,2t+8),
∴PN=t,PM=2t+8,
∵四邊形PNOM是矩形,
解得
∴點(diǎn)P的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)如果∠1=∠B,那么_______∥_______,根據(jù)是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根據(jù)是__________________________;
(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)
互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A、B,與函數(shù)圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2,在x軸上有點(diǎn)P(a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和的圖象于點(diǎn)C、D.
(1)求點(diǎn)A的坐標(biāo):
(2)若OB=CD,求a的值
(3)在(2)條件下若以0D線段為邊,作正方形0DEF,求直線EF的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,是真命題的是( )
A.相等的角是對(duì)頂角
B.同旁內(nèi)角互補(bǔ)
C.過一點(diǎn)不只有一條直線與已知直線垂直
D.對(duì)于直線 a、b、c,如果 b∥a,c∥a,那么 b∥c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)點(diǎn)M(x,y),若x,y滿足下列條件,請(qǐng)說出點(diǎn)M的位置.
(1)xy<0;(2)x+y=0;(3)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com