【題目】某天早上,住在同一小區(qū)的小雨、小靜兩人從小區(qū)出發(fā),沿相同的路線步行到學(xué)校上學(xué).小雨出發(fā)5分鐘后,小靜才出發(fā),同時小雨發(fā)現(xiàn)自己沒帶手表,于是決定按原速回家拿手表小雨拿到手表后,擔(dān)心會遲到,于是速度提高了20%,結(jié)果比小靜早2分鐘到校.小雨取手表的時間忽略不計,在整個過程中,小靜始終保持勻速運動,小雨提速前后也分別保持勻速運動,如圖所示是小雨、小靜之間的距離(米)與小雨離開小區(qū)的時間(分鐘)之間的函數(shù)圖像,則小區(qū)到學(xué)校的距離是_______米.

【答案】1980

【解析】

根據(jù)圖像信息求得小雨、小靜的速度,再通過列一元一次方程并解方程求得小雨到家取傘再從家到學(xué)校所用時間,然后求得小雨從小區(qū)到學(xué)校的時間,即可求得答案.

解:∵由圖可知小雨出發(fā)速度為:

∴提速后速度為

∵小靜的速度為

∴設(shè)小雨到家取傘再從家到學(xué)校所用時間為

∴小區(qū)到學(xué)校的距離為米.

故答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象的頂點坐標(biāo)為(1, ),現(xiàn)將等腰直角三角板直角頂點放在原點O,一個銳角頂點A在此二次函數(shù)的圖象上,而另一個銳角頂點B在第二象限,且點A的坐標(biāo)為(2,1.

1)求該二次函數(shù)的表達式;

2)判斷點B是否在此二次函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

我們知道方程2x+3y=12有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y==4-x,(xy為正整數(shù))

則有0x6

y=4-x為正整數(shù),則x為正整數(shù).

從而x=3,代入y=4-×3=2

2x+3y=12的正整數(shù)解為

利用以上方法解決下列問題:

七年級某班為了獎勵學(xué)習(xí)進步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.

(1)求此拋物線的解析式;

(2)直接寫出點C和點D的坐標(biāo);

(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y(tǒng)=a(x﹣4)2+h,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣時,①求h的值;②通過計算判斷此球能否過網(wǎng).

(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為m的Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于BC兩點,且D、E分別為頂點.則下列結(jié)論:①a=;AC=AE;③△ABD是等腰直角三角形;④當(dāng)x1時,y1y2  其中正確結(jié)論的個數(shù)是( )

A. 1B2C3D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:EFAD,∠1=2,∠BAC=70°,求∠AGD的度數(shù).

解:∵EFAD(已知)

∴∠2=_________

∵∠1=2(已知)

∴∠1=__________

DGBA

又∵∠BAC=70°(已知)

∴∠AGD=_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小章利用一張左、右兩邊已經(jīng)破損的長方形紙片ABCD做折紙游戲,他將紙片沿EF折疊后,D,C兩點分別落在點D′,C′的位置,∠DEF=∠DEF,并利用量角器量得∠EFB66°,則∠AED′的度數(shù)為(  )

A. 66°B. 132°C. 48°D. 38°

查看答案和解析>>

同步練習(xí)冊答案