【題目】閱讀下列材料:

我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得y==4-x,(xy為正整數(shù))

則有0x6

y=4-x為正整數(shù),則x為正整數(shù).

從而x=3,代入y=4-×3=2

2x+3y=12的正整數(shù)解為

利用以上方法解決下列問題:

七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購(gòu)買方案?

【答案】有兩種購(gòu)買方案,方案一:購(gòu)買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;方案二:購(gòu)買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.

【解析】

設(shè)購(gòu)買單價(jià)為3元的筆記本m本,單價(jià)為5元的鋼筆n支,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于m、n的二元一次方程,結(jié)合m、n均為正整數(shù)即可求出結(jié)論.

設(shè)購(gòu)買單價(jià)為3元的筆記本m本,單價(jià)為5元的鋼筆n支,

根據(jù)題意得:3m+5n=35,其中m、n均為正整數(shù),

n==7-m,

解得:0m

n=7-m為正整數(shù),

m為正整數(shù),即m5的倍數(shù),

∴當(dāng)m=5時(shí),n=4;當(dāng)m=10時(shí),n=1

答:有兩種購(gòu)買方案,方案一:購(gòu)買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;方案二:購(gòu)買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,4).

(1)求拋物線的解析式;

(2)若點(diǎn)M是拋物線在x軸下方的動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N求線段MN的最大值;(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P使△PBN是等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,物理實(shí)驗(yàn)室有一單擺在左右擺動(dòng),擺動(dòng)過程中選取了兩個(gè)瞬時(shí)狀態(tài),從C處測(cè)得E、F兩點(diǎn)的俯角分別為∠ACE=60°,BCF=45°,這時(shí)點(diǎn)F相對(duì)于點(diǎn)E升高了4cm求該擺繩CD的長(zhǎng)度.(精確到0.1cm,參考數(shù)據(jù): ≈1.41, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊三角形模具的陰影部分已破損.回答下列問題:

1)只要從模具片中度量出哪些邊、角,就可以到店鋪加工一塊與原來的模具ABC的形狀和大小完全相同的ABC模具?請(qǐng)簡(jiǎn)要說明理由.

2)按尺規(guī)作圖的要求,在框內(nèi)正確作出ABC圖形,保留作圖痕跡,不寫作法和證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點(diǎn)Pxy)的坐標(biāo)滿足x+y=xy,那么稱點(diǎn)P和諧點(diǎn),若某個(gè)和諧點(diǎn)Px軸的距離為2,則P點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長(zhǎng)為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,按此規(guī)律繼續(xù)下去,則 S9的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是(  。

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天早上,住在同一小區(qū)的小雨、小靜兩人從小區(qū)出發(fā),沿相同的路線步行到學(xué)校上學(xué).小雨出發(fā)5分鐘后,小靜才出發(fā),同時(shí)小雨發(fā)現(xiàn)自己沒帶手表,于是決定按原速回家拿手表小雨拿到手表后,擔(dān)心會(huì)遲到,于是速度提高了20%,結(jié)果比小靜早2分鐘到校.小雨取手表的時(shí)間忽略不計(jì),在整個(gè)過程中,小靜始終保持勻速運(yùn)動(dòng),小雨提速前后也分別保持勻速運(yùn)動(dòng),如圖所示是小雨、小靜之間的距離(米)與小雨離開小區(qū)的時(shí)間(分鐘)之間的函數(shù)圖像,則小區(qū)到學(xué)校的距離是_______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A10)、點(diǎn)By軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣32).

1)直接寫出點(diǎn)E的坐標(biāo)      ;

2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問題:

當(dāng)t=      秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

求點(diǎn)P在運(yùn)動(dòng)過程中的坐標(biāo),(用含t的式子表示,寫出過程);

當(dāng)點(diǎn)P運(yùn)動(dòng)到CD上時(shí),設(shè)∠CBP=x°∠PAD=y°,∠BPA=z°,試問 x,y,z之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含x,y的式子表示z,寫出過程;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案