【題目】已知:如圖,9×9的網(wǎng)格中(每個小正方形的邊長為1)有一個格點△ABC.
(1)利用網(wǎng)格線,畫∠CAB的角平分線AQ,交BC于點Q,畫BC的垂直平分線,交射線AQ于點D;
(2)連接CD、BD,則∠CDB= °.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.
⑴先從袋中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為_______,若A為隨機事件,則m的取值為______;
⑵若從袋中隨機摸出2個球,正好紅球、黑球各1個,用列表法與樹狀圖法求這個事件的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,利用關于坐標系軸對稱的點的坐標的特點.
(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;
(2)寫出各點坐標:△A1( ),B1( ),C1 ( ).
(3)直接寫出△ABC 的面積______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級舞蹈興趣小組8名學生的身高分別為(單位:cm):168,165,168,166,170,170,175,170,則下列說法錯誤的是( )
A. 這組數(shù)據(jù)的平均數(shù)是169 B. 這組數(shù)據(jù)的眾數(shù)是170
C. 這組數(shù)據(jù)的中位數(shù)是169 D. 這組數(shù)據(jù)的方差是66
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+4的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2與l1交于點C(m,3),過動點M(n,0)作x軸的垂線與直線l1和l2分別交于P、Q兩點.
(1)求m的值及l2的函數(shù)表達式;
(2)當PQ≤4時,求n的取值范圍;
(3)是否存在點P,使S△OPC=2S△OBC?若存在,求出此時點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學生各自隨機選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學生在同一餐廳用餐的概率;
(2)甲、乙兩名學生至少有一人在B餐廳的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中.
(1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1,C1的坐標;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com