精英家教網(wǎng)在4×4的正方形網(wǎng)格中,每個小方形的邊長都是1.線段AB、EA分別是圖中1×3的兩個長方形的對角線,請你證明AB⊥EA.
分析:由勾股定理分別求得AE、AB、BE的值,再證明AE2+AB2=BE2,即可證明AB⊥EA.
解答:解:∵AE=
12+32
=
10
,AB=
12+32
=
10
,BE=
22+42
=
20
=2
5
,
∴AE2+AB2=BE2
∴△ABE是直角三角形,
∴AB⊥EA.
點(diǎn)評:此題考查在網(wǎng)格中勾股定理和逆定理的應(yīng)用,也是常用的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在4×4的正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)(端點(diǎn))分別按下列要求畫出圖:
(1)在左圖中,畫一條線段AB,使AB=2
2
;
(2)在右圖中,畫一個直角三角形,使它三邊長均為無理數(shù).
 精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在5×5的正方形網(wǎng)格中,以AB為邊畫直角△ABC,使點(diǎn)C在格點(diǎn)上,滿足這樣條件的點(diǎn)C共
8
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•岳池縣模擬)在6×8的正方形網(wǎng)格中建立了如圖所示的平面直角坐標(biāo)系xoy,已知每個最小正方形邊長為1,將圖中的OA繞O點(diǎn)逆時針旋轉(zhuǎn)90°得到OA′,則A′點(diǎn)坐標(biāo)為
(-3,-2)
(-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在10×10的正方形網(wǎng)格紙中(每個小方格的邊長都是1個單位)有一個△ABC,請?jiān)诰W(wǎng)格紙中畫出以點(diǎn)O為旋轉(zhuǎn)中心把△ABC按順時針方向旋轉(zhuǎn)90°得到的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題
(1)在圖中找出點(diǎn)P,使得點(diǎn)P到C、D兩點(diǎn)的距離相等,并且點(diǎn)P到OA、OB的距離也相等.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)如圖,在10×5的正方形網(wǎng)格中,每個小正方形的邊長均為單位1,將△ABC向右平移7個單位,得到△A′B′C′,再把△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)90°,得到△A″B″C″.請你畫出△A′B′C′和△A″B″C″.

查看答案和解析>>

同步練習(xí)冊答案