【題目】如圖①,在△ABC中,AC=BC,點D為BC的中點,DE⊥AB,垂足為點E,過點B作BG∥AC交DE的延長線于點G.
(1)求證:DB=BG;
(2)當∠ACB=90°時,如圖②,連接AD、CG,求證:AD⊥CG。
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)利用平行線的性質(zhì),和三角形全等得出結(jié)論;(2)利用三角形全等和等角的余角相等,解決問題.
試題解析:證明:(1)∵AC=BC ∴ ∠A=∠CBA
∵ AC∥BG ∴ ∠A=∠GBA即∠CBA=∠GBA
∵ DE⊥AB ∴ ∠DEB=∠GEB
在△DBE和△GBE中
∴ △DBE≌△GBE
∴DB=BG
(2) ∵ 點D為BC的中點 ∴ CD=DB
∵ DB=BG ∴ CD=BG
∵ AC∥BG ∴ ∠ACB+∠GBC=180°
∵ ∠ACB=90° ∴∠GBC=∠ACB=90°
在△ACD和△CBG中
∴ △ACD≌△CBG
即∠CAD=∠BCG
∵ ∠ACG+∠BCG=90°
∴ ∠ACG+∠CAD=90°即 AD⊥CG
科目:初中數(shù)學 來源: 題型:
【題目】在研究圓的有關(guān)性質(zhì)時,我們曾做過這樣的一個操作“將一張圓形紙片沿著它的任意一條直徑翻折,可以看到直徑兩側(cè)的兩個半圓互相重合”.由此說明( 。
A. 圓是中心對稱圖形,圓心是它的對稱中心
B. 圓是軸對稱圖形,任意一條直徑所在的直線都是它的對稱軸
C. 圓的直徑互相平分
D. 垂直弦的直徑平分弦及弦所對的弧
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①、②、③中,點E、D分別是正△ABC、正四邊形ABCM、正五邊形ABCMN中以C點為頂點的相鄰兩邊上的點,且BE=CD,DB交AE于P點.
(1)分別求圖①,圖②和圖③中,∠APD的度數(shù).
(2)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】倡導研究性學習方式,著力教材研究,習題研究,是學生跳出題海,提高學習能力和創(chuàng)新能力的有效途徑.下面是一案例,請同學們認真閱讀、研究,完成“類比猜想”及后面的問題.
習題解答
習題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說明理由.
解:
∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADE′,點F、D、E′在一條直線上.
∴∠E′AF=90°-45°=45°=∠EAF.
又∵AE′=AE,AF=AF
∴△AE′FF≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
習題研究.
觀察分析:
觀察圖1,由解答可知,該題有用的條件是①.ABCD是四邊形,點E、F分別在邊BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=∠BAD.
類比猜想:
在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B=∠D時,還有EF=BE+DF嗎?
要解決上述問題,可從特例入手,請同學們思考:如圖2,在菱形ABCD中,點E、F分別在BC、CD上,當∠BAD=120°,∠EAF=60°時,還有EF=BE+DF嗎?試證明.
(2)在四邊形ABCD中,點E、F分別在邊BC、CD上,當AB=AD,∠B+∠D=180°,∠EAF=∠BAD時,還有EF=BE+DF嗎?使用圖3證明.
歸納概括:
反思前面的解答,思考每個條件的作用,可以得到一個結(jié)論“EF=BE+DF”的一般命題: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鄰補角是( )
A. 和為180°的兩個角
B. 有公共頂點且互補的兩個角
C. 有一條公共邊相等的兩個角
D. 有公共頂點且有一條公共邊,另一邊互為反向延長線的兩個角
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組單項式中,是同類項的一組是( )
A. 3x3y與3xy3 B. 2ab2與-3a2b C. a2與b2 D. 2xy與3 yx
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將下列多項式分解因式,結(jié)果中不含因式x﹣1的是( 。
A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖 a,若 AB∥CD,點 P 在 AB、CD 外部,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?
把下面的解答填上根據(jù):
解:∠B=∠BPD+∠PDC.
理由:作PE∥AB
∵ AB∥CD ( )
∴AB∥CD∥PE ( )
∴∠B=∠BPE, ∠D=∠DPE ( )
∵∠BPE=∠BPD+∠DPE
∴∠B=∠BPD+∠PDC ( )
(2)若AB∥CD,將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D 之間有何數(shù)量關(guān)系?請證明你的結(jié)論.
(3)在圖 b 中,將直線 AB 繞點B逆時針方向旋轉(zhuǎn)一定角度交直線 CD 于點 Q,如圖 c,則∠BPD、∠B、∠D、∠BQD 之間滿足的數(shù)量關(guān)系是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com