科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,已知點A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根長為2014個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在A處,并按A→B→C→D→A…的規(guī)律緊繞在四邊形ABCD的邊上,則細線的另一端所在位置的點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點C的坐標(biāo)是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為1個單位,運動時間為t秒.過點P作PE⊥AO交AB于點E.
(1)求直線AB的解析式;
(2)設(shè)△PEQ的面積為S,求S與t時間的函數(shù)關(guān)系,并指出自變量t的取值范圍;
(3)在動點P、Q運動的過程中,點H是矩形AOBC內(nèi)(包括邊界)一點,且以B、Q、E、H為頂點的四邊形是菱形,直接寫出t值和與其對應(yīng)的點H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點A是⊙O上一點,OA⊥AB,且OA=1,AB=,OB交⊙O于點D,作AC⊥OB,垂足為M,并交⊙O于點C,連接BC.
(1)求證:BC是⊙O的切線;
(2)過點B作BP⊥OB,交OA的延長線于點P,連接PD,求sin∠BPD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
對于平面直角坐標(biāo)系中任意兩點P1(x1,y1)、P2(x2,y2),稱|x1﹣x2|+|y1﹣y2|為P1、P2兩點的直角距離,記作:d(P1,P2).若P0(x0,y0)是一定點,Q(x,y)是直線y=kx+b上的一動點,稱d(P0,Q)的最小值為P0到直線y=kx+b的直角距離.令P0(2,﹣3).O為坐標(biāo)原點.則:
(1)d(O,P0)= ;
(2)若P(a,﹣3)到直線y=x+1的直角距離為6,則a= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在5×4的方格紙中,每個小正方形邊長為1,點O,A,B在方格紙的交點(格點)上,在第四象限內(nèi)的格點上找點C,使△ABC的面積為3,則這樣的點C共有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com