【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
(2)若△ABC和△A1B2C2關于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A2B3C3 , 寫出△A2B3C3的各頂點的坐標.

【答案】
(1)

解:如圖,△A1B1C1為所作,

因為點C(﹣1,3)平移后的對應點C1的坐標為(4,0),

所以△ABC先向右平移5個單位,再向下平移3個單位得到△A1B1C1

所以點A1的坐標為(2,2),B1點的坐標為(3,﹣2)


(2)

解:因為△ABC和△A1B2C2關于原點O成中心對稱圖形,

所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);


(3)

解:如圖,△A2B3C3為所作,A3(5,3),B3(1,2),C3(3,1);


【解析】(1)利用點C和點C1的坐標變化得到平移的方向與距離,然后利用此平移規(guī)律寫出頂點A1 , B1的坐標;(2)根據(jù)關于原點對稱的點的坐標特征求解;(3)利用網(wǎng)格和旋轉(zhuǎn)的性質(zhì)畫出△A2B3C3 , 然后寫出△A2B3C3的各頂點的坐標.本題考查了坐標與圖形變化﹣旋轉(zhuǎn):圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°.
【考點精析】根據(jù)題目的已知條件,利用坐標與圖形變化-平移的相關知識可以得到問題的答案,需要掌握新圖形的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點;連接各組對應點的線段平行且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組為測得校園里旗桿AB的高度,在操場的平地上選擇一點C,測得旗桿頂端A的仰角為30°,再向旗桿的方向前進16米,到達點D處(C、D、B三點在同一直線上),又測得旗桿頂端A的仰角為45°,請計算旗桿AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Pn表示n邊形的對角線的交點個數(shù)(指落在其內(nèi)部的交點),如果這些交點都不重合,那么Pn與n的關系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時,P4= ;五邊形時,P5=
(2)請根據(jù)四邊形和五邊形對角線交點的個數(shù),結(jié)合關系式,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關系式;
(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標,如圖,點O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點處利用測角儀測得摩天輪的最高點A的仰角為33°,測得圓心O的仰角為21°,則小瑩所在C點到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。

A.169米
B.204米
C.240米
D.407米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在 的中點,連接AF并延長與CB的延長線相交于點G,連接OF.

(1)求證:OF= BG;
(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)7月1日﹣7月7日一周天氣預報如圖,小麗打算選擇這期間的一天或兩天去該景區(qū)旅游,求下列事件的概率:

(1)隨機選擇一天,恰好天氣預報是晴;
(2)隨機選擇連續(xù)的兩天,恰好天氣預報都是晴.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結(jié)論:AC+BC= CD.
簡單應用:

(1)在圖①中,若AC= ,BC=2 ,則CD=
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是CD的中點,點F在BC上,且FC= BC.圖中相似三角形共有(
A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

同步練習冊答案