精英家教網 > 初中數學 > 題目詳情

【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結合的城市地標,如圖,點O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點處利用測角儀測得摩天輪的最高點A的仰角為33°,測得圓心O的仰角為21°,則小瑩所在C點到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。

A.169米
B.204米
C.240米
D.407米

【答案】B
【解析】解:

過C作CD⊥AB于D,
在Rt△ACD中,AD=CDtan∠ACD=CDtan33°,
在Rt△BCO中,OD=CDtan∠BCO=CDtan21°,
∵AB=110m,
∴AO=55m,
∴A0=AD﹣OD=CDtan33°﹣CDtan21°=55m,
∴CD= = ≈204m,
答:小瑩所在C點到直徑AB所在直線的距離約為204m.
故選B.
過C作CD⊥AB于D,在Rt△ACD中,求得AD=CDtan∠ACD=CDtan33°,在Rt△BCO中,求得OD=CDtan∠BCO=CDtan21°,列方程即可得到結論.此題主要考查了仰角與俯角的問題,利用兩個直角三角形擁有公共直角邊,能夠合理的運用這條公共邊是解答此題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”

(1)概念理解:
請你根據上述定義舉一個等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結AC,BD,試探究AC與BD的數量關系,并說明理由;
(3)應用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點P(a+1,﹣ +1)關于原點的對稱點在第四象限,則a的取值范圍在數軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一矩形紙片ABCD折疊,使兩個頂點A,C重合,折痕為FG.若AB=4,BC=8,則△ABF的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC經過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
(2)若△ABC和△A1B2C2關于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉90°得到△A2B3C3 , 寫出△A2B3C3的各頂點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設x1、x2是方程x2﹣4x+m=0的兩個根,且x1+x2﹣x1x2=1,則x1+x2= , m=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了豐富同學們的課余生活,某學校舉行“親近大自然”戶外活動,現隨機抽取了部分學生進行主題為“你最想去的景點是?”的問卷調查,要求學生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個景點中選擇一項,根據調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.

請解答下列問題:
(1)本次調查的樣本容量是
(2)補全條形統(tǒng)計圖;
(3)若該學校共有3600名學生,試估計該校最想去濕地公園的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】黔東南州某中學為了解本校學生平均每天的課外學習實踐情況,隨機抽取部分學生進行問卷調查,并將調查結果分為A,B,C,D四個等級,設學生時間為t(小時),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請你根據圖中信息解答下列問題:

(1)本次抽樣調查共抽取了多少名學生?并將條形統(tǒng)計圖補充完整;
(2)本次抽樣調查中,學習時間的中位數落在哪個等級內?
(3)表示B等級的扇形圓心角α的度數是多少?
(4)在此次問卷調查中,甲班有2人平均每天課外學習時間超過2小時,乙班有3人平均每天課外學習時間超過2小時,若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

同步練習冊答案