【題目】王紅有5張寫著以下數字的卡片,請按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數字乘積最小,最小值是 .
(2)從中取出2張卡片,使這2張卡片數字相除商最大,最大值是 .
(3)從中取出除0以外的4張卡片,將這4個數字進行加、減、乘、除或乘方等混合運算,使結果為24,(注:每個數字只能用一次,如:23×[1﹣(﹣2)]),請另寫出一種符合要求的運算式子 .
【答案】(1)﹣6;(2)3;(3) [3﹣(﹣2)]2﹣1=24(答案不唯一,符合題意正確即可).
【解析】
(1)觀察這五個數,要找乘積最小的就要找符號相反且數值最大的數,所以選3和-2,再計算即可;(2)觀察這五個數,2張卡片上數字相除的商最大就要找符號相同,且分子越大越好,分母越小越好,所以就要選3和1,且1為分母;(3)從中取出4張卡片,用學過的運算方法,使結果為24,這就不唯一,用加減乘除只要答數是24即可,比如3、-2、2、1,四個數,[3﹣(﹣2)]2﹣1=24.
(1)取3,﹣2,乘積最小=﹣6,
故答案為﹣6.
(2)取3,1商的最大值為3,
故答案為3.
(3)[3﹣(﹣2)]2﹣1=24.
科目:初中數學 來源: 題型:
【題目】一個三角形內有n個點,在這些點及三角形頂點之間用線段連接起來,使得這些線段互不相交,且又能把原三角形分割為不重疊的小三角形.如圖:若三角形內有1個點時此時有3個小三角形;若三角形內有2個點時,此時有5個小三角形.則當三角形內有3個點時,此時有個小三角形;當三角形內有n個點時,此時有個小三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售進價為2元的雪糕,在銷售中發(fā)現,此商品的日銷售單價x(元)與日銷售量y(根)之間有如下關系:
日銷售單價x(元) | 3 | 4 | 5 | 6 |
日銷售量y(根) | 40 | 30 | 24 | 20 |
(1)猜測并確定y和x之間的函數關系式;
(2)設此商品銷售利潤為W,求W與x的函數關系式,若物價局規(guī)定此商品最高限價為10元/根,你是否能求出商品日銷售最大利潤?若能請求出,不能請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個3×3的方格中填寫了9個數字,使得每行、每列、每條對角線上的三個數之和相等,得到的3×3的方格稱為一個三階幻方.
(1)在圖1中空格處填上合適的數字,使它構成一個三階幻方;
(2)如圖2的方格中填寫了一些數和字母,當x+y的值為多少時,它能構成一個三階幻方.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,在ABCD中,E、F為對角線AC上的兩點,且AE=CF,連接DE、BF,
(1)寫出圖中所有的全等三角形;
(2)求證:DE∥BF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD(AD>AB)中,將它折疊,使點A與C重合,折痕EF交AD于E,交BC于F,交AC于O,連結AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)過E作EP⊥AD交AC于P,求證:AE2=AOAP;
(3)若AE=8,△ABF的面積為9,求AB+BF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學習了數據的收集、整理與描述后,為媽媽整理記錄了10月份的家庭支出情況,并繪制成如下尚不完整的統計圖表,請你根據圖表信息完成下列各題:
項目 | 物業(yè)費 | 伙食費 | 服裝費 | 其他費 |
金額/元 | 800 | 400 |
(1)10月份小明家共支出多少元?
(2)在扇形統計圖中,表示“其他費”的扇形圓心角為多少度?
(3)請將表格補充完整;
項目 | 物業(yè)費 | 伙食費 | 服裝費 | 其他費 |
金額/元 | 800 | ________ | ________ | 400 |
(4)請將條形統計圖補充完整.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com