【題目】如圖,△ABD內(nèi)接于圓O,∠BAD=60°,AC為圓O的直徑.AC交BD于P點且PB=2,PD=4,則AD的長為( )
A. 2 B. 2 C. 2 D. 4
【答案】B
【解析】
連接DO并延長交⊙O于E,連接BE,由DE是⊙O的直徑,可得∠EBD=90°,由圓周角定理可得∠BED=∠BAD=60°,繼而得∠BDE=30°,可求得BD、DE長,進而可得OA=OD=2,根據(jù)相似三角形的判定可得△OPD∽△BED,從而可得∠POD=∠EBD=90°,再根據(jù)勾股定理即可求得結(jié)論.
連接DO并延長交⊙O于E,連接BE,
∵DE是⊙O的直徑,
∴∠EBD=90°,
∵∠BED=∠BAD=60°,
∴∠EDB=30°,
∴DE=2BE,
∵PB=2,PD=6,
∴BD=6,
∵BD2+BE2=DE2,
∴DE=4,BE=2,
∴OA=OD==2,
∵,,
∴,
又∵∠ODP=∠BDE,
∴△ODP∽△BDE,
∴∠POD=∠EBD=90°,
∴AD=,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點C在線段AB上,(點C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點P
(1)觀察猜想:①線段AE與BD的數(shù)量關(guān)系為_________;②∠APC的度數(shù)為_______________
(2)數(shù)學(xué)思考:如圖2,當(dāng)點C在線段AB外時,(1)中的結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明
(3)拓展應(yīng)用:如圖3,分別以AC、BC為邊在AB同側(cè)作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,連接AE=BD交于點P,則線段AE與BD的關(guān)系為________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點C(0,3)
(1)求此拋物線的解析式;
(2)證明:該拋物線恒在直線y=﹣2x+1上方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,CD、CM分別是斜邊上的高和中線,那么下列結(jié)論中錯誤的是( )
A.CM=ACB.∠ACM=∠DCBC.AD=DMD.DB=4AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠ABC=30°,點D在射線BC上,且到A點的距離等于線段a的長.
(1)用圓規(guī)和直尺在圖中作出點D:(不寫作法,但須保留作圖痕跡,且說明結(jié)果
(2)如果AB=8,a=5.求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC是⊙O的直徑,點D是BC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)在長方形ABCD中,AB=5cm,BC=6cm,點P從點A開始沿邊AB向終點B以1cm/s的速度移動,與此同時,點Q從點C開始沿邊CB向終點B以2cm/s的速度移動,如果P、Q分別從A、C同時出發(fā),當(dāng)點Q運動到點B時,兩點停止運動.設(shè)運動時間為t秒.
(1)填空:BQ=______________cm,PB=_______________cm(用含t的代數(shù)式表示);
(2)當(dāng)t為何值時,PQ的長度等于cm?
(3)是否存在t的值,使得五邊形APQCD的面積等于27?若存在,請求出此時t的值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com