已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.

【答案】分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠2,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(2)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.
解答:(1)解:∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠2,
∴∠ACD=∠2,
∴MC=MD,
∵ME⊥CD,
∴CD=2CE,
∵CE=1,
∴CD=2,
∴BC=CD=2;

(2)證明:如圖,∵F為邊BC的中點,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,

∴△CEM≌△CFM(SAS),
∴ME=MF,
延長AB交DF的延長線于點G,
∵AB∥CD,
∴∠G=∠2,
∵∠1=∠2,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,

∴△CDF≌△BGF(AAS),
∴GF=DF,
由圖形可知,GM=GF+MF,
∴AM=DF+ME.
點評:本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等角對等邊的性質(zhì),作出輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知:如圖,在菱形ABCD中,E、F分別是BC、CD的中點.
(1)求證:△ABE≌△ADF;

(2)過點C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•重慶)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在菱形ABCD中,E為BC邊上一點,∠AED=∠B.
(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•貴陽)已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.
(1)求證:AE=EC;
(2)當∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,在菱形ABCD中,AE⊥BC于點E,BE=12,sinD=
513

(1)求菱形的邊長;
(2)求菱形的面積.

查看答案和解析>>

同步練習冊答案