【題目】設(shè)正實(shí)數(shù)x,y,z滿足x2﹣3xy+4y2﹣z=0.則當(dāng) 取得最大值時(shí), 的最大值為(
A.0
B.1
C.
D.3

【答案】B
【解析】解:∵x2﹣3xy+4y2﹣z=0, ∴z=x2﹣3xy+4y2 , 又x,y,z均為正實(shí)數(shù),
= = =1(當(dāng)且僅當(dāng)x=2y時(shí)取“=”),
=1,此時(shí),x=2y.
∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2
+ = + =﹣ +1≤1,當(dāng)且僅當(dāng)y=1時(shí)取得“=”,滿足題意.
的最大值為1.
故選B.
依題意,當(dāng) 取得最大值時(shí)x=2y,代入所求關(guān)系式f(y)= + ,利用配方法即可求得其最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是(  )
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點(diǎn)H為垂足.設(shè)AB=x,AD=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“一方有難,八方支援”,雅安蘆山420地震后,某單位為一中學(xué)捐贈(zèng)了一批新桌椅,學(xué)校組織初一年級(jí)200名學(xué)生搬桌椅.規(guī)定一人一次搬兩把椅子,兩人一次搬一張桌子,每人限搬一次,最多可搬桌椅(一桌一椅為一套)的套數(shù)為(
A.60
B.70
C.80
D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值:
﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導(dǎo)數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年二十國(guó)集團(tuán)領(lǐng)導(dǎo)人峰會(huì)(簡(jiǎn)稱“G20峰會(huì)”)于9月4日至5日在浙江杭州召開,為保證會(huì)議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會(huì)”調(diào)休期間.據(jù)報(bào)道對(duì)于杭州市民:浙江省旅游局聯(lián)合11個(gè)市開展一系列旅游惠民活動(dòng),活動(dòng)內(nèi)容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個(gè)區(qū)域旅游的群眾中抽取7人進(jìn)行某項(xiàng)調(diào)查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個(gè)區(qū)域旅游的群眾分別抽取的人數(shù);
(2)若從抽得的7人中隨機(jī)抽取2人進(jìn)行調(diào)查,用列舉法計(jì)算這2人中至少有1人有意愿參加“本省游”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的極坐標(biāo)方程為ρsin(θ+ )= ,圓C的參數(shù)方程為: (其中θ為參數(shù)).
(1)判斷直線l與圓C的位置關(guān)系;
(2)若橢圓的參數(shù)方程為 (φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且

(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點(diǎn),與圓x2+(y﹣1)2=1相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過A,D兩點(diǎn)分別作我校的切線,兩條切線相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案