【題目】如圖,已知△ABO中A(-1,3)、B(-4,0).
(1)畫出△ABO繞著原點O按順時針方向旋轉(zhuǎn)90°后的圖形,記為△;
(2)求△ABO外接圓圓心坐標;
【答案】(1)詳見解析;(2)(-2,1)
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)找出A,B的對應點A1,B1的位置,順次連接即可得到△A1B1O;
(2)求得線段AO的垂直平分線的解析式為y=x+,BO的垂直平分線為直線x=2,再解方程組,可得△ABO外接圓圓心坐標為(2,1).
解:(1)如圖所示,△A1B1O即為所求;
(2)∵A(1,3)、B(4,0).
∴直線AO的解析式為y=3x,
又∵AO的中點坐標為(,),
設線段AO的垂直平分線的解析式為y=x+b,則,
解得b=,
∴線段AO的垂直平分線的解析式為y=x+,
又∵BO的垂直平分線為直線x=2,
解方程組,可得,
∴△ABO外接圓圓心坐標為(2,1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點M(0,)為圓心,以長為半徑作M交x軸于A.B兩點,交y軸于C.D兩點,連接AM并延長交M于P點,連接PC交x軸于E.
(1)求點C.P的坐標;
(2)求證:BE=2OE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜種植基地為提高蔬菜產(chǎn)量,計劃對甲、乙兩種型號蔬菜大棚進行改造,根據(jù)預算,改造2個甲種型號大棚比1個乙種型號大棚多需資金6萬元,改造1個甲種型號大棚和2個乙種型號大棚共需資金48萬元.
(1)改造1個甲種型號和1個乙種型號大棚所需資金分別是多少萬元?
(2)已知改造1個甲種型號大棚的時間是5天,改造1個乙種型號大概的時間是3天,該基地計劃改造甲、乙兩種蔬菜大棚共8個,改造資金最多能投入128萬元,要求改造時間不超過35天,請問有幾種改造方案?哪種方案基地投入資金最少,最少是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=8,以BC為斜邊在矩形所在平面作直角三角形BEC,F為CD的中點,則EF的最小值為 ( )
A. B. 4C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料題:
浙教版九上作業(yè)本①第18頁有這樣一個題目:已知,如圖一,P是正方形ABDC內(nèi)一點,連接PA、PB、PC,若PC=2,PA=4,∠APC=135°,求PB的長.
小明看到題目后,思考了許久,仍沒有思路,就去問數(shù)學老師,老師給出的提示是:將△PAC繞點A順時針旋轉(zhuǎn)90°得到△P'AB,再利用勾股定理即可求解本題. 請根據(jù)數(shù)學老師的提示幫小明求出圖一中線段PB的長為 .
(方法遷移):已知:如圖二,△ABC為正三角形,P為△ABC內(nèi)部一點,若PC=1,PA=2,PB=,求∠APB的大小.
(能力拓展):已知:如圖三,等腰三角形ABC中∠ACB=120°,D、E是底邊AB上兩點且∠DCE=60°,若AD=2,BE=3,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(4分)如圖,拋物線的對稱軸是.且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正確的結(jié)論是 .(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)和B(2,b)兩點,與y軸交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出不等式的解集;
(3)經(jīng)研究發(fā)現(xiàn):在y軸負半軸上存在若干個點P,使得為等腰三角形。請直接寫出P點所有可能的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點C和點D為圓心,大于為半徑作弧,兩弧交于點M,N;②作直線MN,且恰好經(jīng)過點A,與CD交于點E,連接BE,則下列說法錯誤的是( )
A.B.C.若AB=4,則D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com