【題目】閱讀材料題:

浙教版九上作業(yè)本①第18頁有這樣一個題目:已知,如圖一,P是正方形ABDC內(nèi)一點,連接PAPB、PC,若PC=2,PA=4,∠APC=135°,求PB的長.

小明看到題目后,思考了許久,仍沒有思路,就去問數(shù)學(xué)老師,老師給出的提示是:將PAC繞點A順時針旋轉(zhuǎn)90°得到P'AB,再利用勾股定理即可求解本題. 請根據(jù)數(shù)學(xué)老師的提示幫小明求出圖一中線段PB的長為 .

(方法遷移):已知:如圖二,ABC為正三角形,PABC內(nèi)部一點,若PC=1,PA=2PB=,求∠APB的大小.

(能力拓展):已知:如圖三,等腰三角形ABC中∠ACB=120°,DE是底邊AB上兩點且∠DCE=60°,若AD=2,BE=3,求DE的長.

【答案】16;(290°;(3

【解析】

如圖一,根據(jù)旋轉(zhuǎn)的性質(zhì)可得PAP'是等腰直角三角形,求出PP',然后求出∠PP'B=90°,利用勾股定理求出PB即可;

[方法遷移]:將PAC繞點A順時針旋轉(zhuǎn)60°得到P'AB,連接PP',根據(jù)旋轉(zhuǎn)的性質(zhì)可得PAP'是等邊三角形,利用勾股定理逆定理可證∠PBP'=90°,且∠BPP'=30°,問題得解;

[能力拓展]:將CAD繞點C逆時針旋轉(zhuǎn)120°得到CBD',連接ED',易證CDECD'E,可得DE=D'E,然后根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠EBD'=60°AD=BD'=2,過點D'D'FABF,根據(jù)含30°直角三角形的性質(zhì)求出BFD'F,然后利用勾股定理可求D'E,問題得解.

解:如圖一,將PAC繞點A順時針旋轉(zhuǎn)90°得到P'AB,連接PP',

PA= P'A=4,PC= P'B=2,∠PAP'=90°,∠AP'B= APC =135°,

∴∠PP'A=45°,

PP',∠PP'B=135°-45°=90°,

;

[方法遷移]

如圖二,將PAC繞點A順時針旋轉(zhuǎn)60°得到P'AB,連接PP'

PA= P'A=2,PC= P'B=1,∠PAP'=60°,

PAP'是等邊三角形,

PP'= PA= 2,

,即,

∴∠PBP'=90°,∠BPP'=30°,

∴∠APB=60°+30°=90°;

[能力拓展]

如圖三,將CAD繞點C逆時針旋轉(zhuǎn)120°得到CBD',連接ED',

CD=CD',AD=BD'=2,∠DCD'=120°

∵∠DCE=60°,

∴∠DCE=ECD'=60°

又∵CE=CE,

CDECD'ESAS),

DE=D'E

又∵∠A=ABC=,

∴∠A=CBD'=30°

∴∠EBD'=60°,

過點D'D'FABF,

BF=,D'F=

EF=2,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(a>0)A(3,),B(4,)兩點,、之間的關(guān)系是_______________.(用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在公園有兩座垂直于水平地面且高度不一的圓柱,兩座圓柱后面有一堵與地面互相垂直的墻,且圓柱與墻的距離皆為公分.敏敏觀察到高度公分矮圓柱的影子落在地面上,其影長為公分;而高圓柱的部分影子落在墻上,如圖所示.

已知落在地面上的影子皆與墻面互相重直,并視太陽光為平行光,在不計圓柱厚度與影子寬度的情況下,請回答下列問題:

1)若敏敏的身高為公分,且此刻她的影子完全落在地面上,則影長為多少公分?

2)若同一時間量得高圓柱落在墻上的影長為公分,則高圓柱的高度為多少公分?請詳細(xì)解釋或完整寫出你的解題過程,并求出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道平方運算和開方運算是互逆運算,如:,那么,那么如何將雙重二次根式化簡呢?如能找到兩個數(shù),使得,且使,

那么,雙重二次根式得以化簡;

例如化簡: ,

由此對于任意一個二次根式只要可以將其化成的形式,且能找到使得,且,那么這個雙重二次根式一定可以化簡為一個二次根式.請同學(xué)們通過閱讀上述材料,完成下列問題:

(1)填空: _________________; __________________;

(2)化簡:

(3)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABOA(-1,3)、B(-4,0.

1)畫出△ABO繞著原點O按順時針方向旋轉(zhuǎn)90°后的圖形,記為△

2)求△ABO外接圓圓心坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一堂數(shù)學(xué)實踐課上,趙老師給出了下列問題:

(提出問題)

1)如圖1,在△ABC中,EBC的中點,PAE的中點,就稱CP是△ABC的“雙中線”,∠ACB90°,AC3,AB5.則CP   

(探究規(guī)律)

2)在圖2中,E是正方形ABCD一邊上的中點,PBE上的中點,則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長為   (按圖示輔助線求解);

3)在圖3中,AP是矩形ABCD的“雙中線”,若AB4,BC6,請仿照(2)中的方法求出AP的長,并說明理由;

(拓展應(yīng)用)

4)在圖4中,AP是平行四邊形ABCD的“雙中線”,若AB4,BC10,∠BAD120°.求出△ABP的周長,并說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于點,),)。

1)求這兩個函數(shù)的函數(shù)關(guān)系式;

2)當(dāng)為何值時,一次函數(shù)值不小于反比例函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接六一兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴(kuò)大銷售量增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2.

1)每件童裝降價多少元時,能更多讓利于顧客并且商家平均每天能贏利1200.

2)要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,在四邊形中,,點的中點,若的平分線,試判斷,,之間的等量關(guān)系.

解決此問題可以用如下方法:延長的延長線于點,易證得到,從而把,,轉(zhuǎn)化在一個三角形中即可判斷.

,之間的等量關(guān)系________;

2)問題探究:如圖②,在四邊形中,,的延長線交于點,點的中點,若的平分線,試探究,,之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案