【題目】已知關(guān)于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一個(gè)根是0,則a的值為

【答案】-2
【解析】解:把0代入方程有: a2﹣4=0,
a2=4,
∴a=±2;
∵a﹣2≠0,
∴a=﹣2,
所以答案是:﹣2.
【考點(diǎn)精析】利用一元二次方程的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程為一元二次方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△AED為等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.連接BE、CD交于點(diǎn)O,連接AO并延長(zhǎng)交CE為點(diǎn)H.
求證:∠COH=∠EOH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列幾何圖形:①三角形;②長(zhǎng)方形;③正方體;④圓;⑤球;⑥正方形.其中平面圖形有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是邊長(zhǎng)為4cm的正方形ABCD的中心,M是BC的中點(diǎn),動(dòng)點(diǎn)P由A開(kāi)始沿折線ABM方向勻速運(yùn)動(dòng),到M時(shí)停止運(yùn)動(dòng),速度為1cm/s. 設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t(s),點(diǎn)P的運(yùn)動(dòng)路徑與OA、OP所圍成的圖形面積為S(cm2),則描述面積S(cm2)與時(shí)間t(s)的關(guān)系的圖像可以是(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以線段AB的兩個(gè)端點(diǎn)為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于M、N兩點(diǎn),連接MN , 交AB于點(diǎn)D、C是直線MN上任意一點(diǎn),連接CA、CB , 過(guò)點(diǎn)DDEAC于點(diǎn)E , DFBC于點(diǎn)F

(1)求證:△AED≌△BFD
(2)若AB=2,當(dāng)CD的值為多少時(shí),四邊形DECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線y2x322繞它的頂點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是( 。

A.y=﹣2x32+2B.y=﹣2x+32+2

C.y=﹣2x322D.y=﹣2x+322

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)x,y,z滿足x≤y<z,且 , 那么x2+y2+z2的值等于( 。
A.2
B.14
C.2或14
D.14或17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某學(xué)校開(kāi)展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛(ài)鳥(niǎo)護(hù)鳥(niǎo)”為主題的遠(yuǎn)足活動(dòng).已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時(shí)從學(xué)校出發(fā),到達(dá)君山島時(shí),服務(wù)人員所花時(shí)間比學(xué)生少用了3.6小時(shí),求學(xué)生步行的平均速度是多少千米/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y =-x+2與反比例函數(shù)的圖象有唯一公共點(diǎn). 若直線與反比例函數(shù)的圖象有2個(gè)公共點(diǎn),b的取值范圍是

A. b﹥2. B. 2﹤b﹤2. C. b﹥2或b﹤2. D. b﹤2.

查看答案和解析>>

同步練習(xí)冊(cè)答案