【題目】如圖1、2、3中,點、分別是正、正方形、正五邊形中以點為頂點的相鄰兩邊上的點,且,交于點,的度數(shù)分別為,,,若其余條件不變,在正九邊形中,的度數(shù)是( )
A.B.C.D.
【答案】C
【解析】
根據(jù)等邊三角形的性質(zhì)得出AB=BC,∠ABC=∠C=60,證△ABE≌△BCD,推出∠BAE=∠CBD,根據(jù)三角形的外角性質(zhì)推出∠APD=∠BAE+∠ABD=∠ABC=60,同理其它情況也是∠APD等于其中一個角;正四邊形時,同樣能推出∠APD=∠ABC=90,正五邊形時,∠APD=∠ABC==108,正六邊形時,∠APD=∠ABC==120,依此類推得出正n邊形時,∠APD=∠ABC=,故可求解.
∵△ABC是等邊三角形,
∴AB=BC,∠ABC=∠C=60,
∵在△ABE和△BCD中
,
∴△ABE≌△BCD,
∴∠BAE=∠CBD,
∴∠APD=∠BAE+∠ABD=∠CBD+∠ABD=∠ABC=60,
即∠APD=60,
同理:正四邊形時,∠APD=90=,
∴正五邊形時,∠APD=∠ABC==108,
正六邊形時,∠APD=∠ABC==120,
依此類推得出正n邊形時,∠APD=∠ABC=,
∴正九邊形中,的度==
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結(jié)論:∽;;;其中正確的結(jié)論有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在一個直角三角形的內(nèi)部作一個長方形ABCD,其中AB和BC分別在兩直角邊上,設(shè)AB=xm,長方形的面積為ym2,要使長方形的面積最大,其邊長x應(yīng)為( 。
A. m B. 6m C. 15m D. m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人做某種機(jī)械零件,已知每小時甲比乙少做8個,甲做120個所用的時間與乙做150個所用的時間相等.
(1)甲、乙二人每小時各做零件多少個?
(2)甲做幾小時與乙做4小時所做機(jī)械零件數(shù)相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=與y軸交于(0,3)點.
(1)求出m的值并在給出的直角坐標(biāo)系中畫出這條拋物線;
(2)根據(jù)圖像回答下列問題:
①方程的根是多少?
②x取什么值時, ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.若△DCE其中一邊與AB平行,則∠ECB的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從兩地同時出發(fā),沿同一公路相向而行,開往兩地.已知甲車每小時比乙車每小時多走,且甲車行駛所用的時間與乙車行駛所用的時間相同.
(1)求甲、乙兩車的速度各是多少?
(2)實際上,甲車出發(fā)后,在途中因車輛故障耽擱了20分鐘,但仍比乙車提前1小時到達(dá)目的地.求兩地間的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天津北寧公園內(nèi)的致遠(yuǎn)塔,塔高九層,塔內(nèi)四周墻壁上鑲鉗著歷史題材為內(nèi)容的瓷板油彩畫或青石刻浮雕,疊雙向盤旋樓梯或電梯可達(dá)九層,津門美景盡收眼底,是我國目前最高的寶塔.某校數(shù)學(xué)情趣小組實地測量了致遠(yuǎn)塔的高度,如圖,在處測得塔尖的仰角為,再沿方向前進(jìn)到達(dá)處,測得塔尖的仰角為,求塔高(精確到,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com