【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.

(1)求拋物線的解析式;

(2)求點(diǎn)D的坐標(biāo);

(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

【答案】(1)y=-x2+3x;(2) 點(diǎn)D坐標(biāo)為(1,);(3)存在,N1(2,0),N2(6,0),N3(--1,0),N4-1,0).

【解析】

試題分析:(1)由OA的長度確定出A的坐標(biāo),再利用對稱性得到頂點(diǎn)坐標(biāo),設(shè)出拋物線的頂點(diǎn)形式y(tǒng)=a(x-2)2+3,將A的坐標(biāo)代入求出a的值,即可確定出拋物線解析式;

(2)設(shè)直線AC解析式為y=kx+b,將A與C坐標(biāo)代入求出k與b的值,確定出直線AC解析式,與拋物線解析式聯(lián)立即可求出D的坐標(biāo);

(3)存在,分兩種情況考慮:如圖所示,當(dāng)四邊形ADMN為平行四邊形時(shí),DM∥AN,DM=AN,由對稱性得到M(3,),即DM=2,故AN=2,根據(jù)OA+AN求出ON的長,即可確定出N的坐標(biāo);當(dāng)四邊形ADM′N′為平行四邊形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,將y=-代入得:-=-x2+3x,求出x的值,確定出OP的長,由OP+PN′求出ON′的長即可確定出N′坐標(biāo).

試題解析:(1)設(shè)拋物線頂點(diǎn)為E,根據(jù)題意OA=4,OC=3,得:E(2,3),

設(shè)拋物線解析式為y=a(x-2)2+3,

將A(4,0)坐標(biāo)代入得:0=4a+3,即a=-,

則拋物線解析式為y=-(x-2)2+3=-x2+3x;

(2)設(shè)直線AC解析式為y=kx+b(k≠0),

將A(4,0)與C(0,3)代入得:,

解得:,

故直線AC解析式為y=-x+3,

與拋物線解析式聯(lián)立得:,

解得:

則點(diǎn)D坐標(biāo)為(1,);

(3)存在,分兩種情況考慮:

①當(dāng)點(diǎn)M在x軸上方時(shí),如圖1所示:

四邊形ADMN為平行四邊形,DM∥AN,DM=AN,

由對稱性得到M(3,),即DM=2,故AN=2,

∴N1(2,0),N2(6,0);

②當(dāng)點(diǎn)M在x軸下方時(shí),如圖2所示:

過點(diǎn)D作DQ⊥x軸于點(diǎn)Q,過點(diǎn)M作MP⊥x軸于點(diǎn)P,可得△ADQ≌△NMP,

∴MP=DQ=,NP=AQ=3,

將yM=-代入拋物線解析式得:-=-x2+3x,

解得:xM=2-或xM=2+,

∴xN=xM-3=--1或-1,

∴N3(--1,0),N4-1,0).

綜上所述,滿足條件的點(diǎn)N有四個(gè):N1(2,0),N2(6,0),N3(--1,0),N4-1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知10a=5,10b=25,則103a-b=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D、E、F分別是AB、BC、CA的中點(diǎn),AH是邊BC上的高.

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:∠DHF=∠DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為4,2,直線y=x+3交AB,BC分別于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)M,N

1求反比例函數(shù)的解析式;

2若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40.為了擴(kuò)大銷售,增加盈利,商場采取了降價(jià)措施.假設(shè)在一定范圍內(nèi),襯衫的單價(jià)每降1元,商場平均每天可多售出2.如果降價(jià)后商場銷售這批襯衫每天盈利1250元,那么襯衫的單價(jià)降了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校學(xué)生的課余活動(dòng)情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成折線統(tǒng)計(jì)圖(部分)和扇形統(tǒng)計(jì)圖(部分)如下:

(1)在這次研究中,一共調(diào)查了 名學(xué)生.

(2)補(bǔ)全頻數(shù)分布折線圖;

(3)該校共有2200名學(xué)生,估計(jì)該校學(xué)生中愛好閱讀的人數(shù)大約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(a+2)2+4|b-5|=0,求(7a+8b)-(-4a+6b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,過點(diǎn)DDEAB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF

(1)求證:四邊形DEBF是矩形;

(2)若AF平分∠DAB,AE=3,BF=4,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,取一副三角板按圖1拼接,固定三角板ADE(含30°),將三角板ABC(含45°)繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)一個(gè)大小為α的角(0°<α≤45°),試問:

(1)當(dāng)∠α=_____度時(shí),能使圖2中的AB∥DE;

(2)當(dāng)旋轉(zhuǎn)到AB與AE重疊時(shí)(如圖3),則∠α=_____度;

(3)當(dāng)△ADE的一邊與△ABC的某一邊平行(不共線)時(shí),直接寫出旋轉(zhuǎn)角α的所有可能的度數(shù);

(4)當(dāng)0°<α≤45°時(shí),連接BD(如圖4),探求∠DBC+∠CAE+∠BDE的值的大小變化情況,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案