【題目】現(xiàn)有長度分別為3cm、4cm、5cm、8cm4根木條

(1)李鑫同學從中任取一根,抽到長度是4cm的木條的概率是  

(2)在李鑫同學取出4cm的木條后,王華同學又從剩下的木條中,同時隨機取出兩根,求他們?nèi)〕龅娜緱l能構成三角形的概率.

【答案】(1);(2)

【解析】

(1)概率=所求情況數(shù)與總情況數(shù)之比.

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能組成三角形的情況,再利用概率公式求解即可求得答案.

(1)李鑫同學從中任取一根,抽到長度是4cm的木條的概率=;

故答案為

(2)畫樹狀圖為:

共有6種等可能的結果數(shù),其中他們?nèi)〕龅娜緱l能構成三角形的結果數(shù)為4,

所以他們?nèi)〕龅娜緱l能構成三角形的概率==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.

(1)求證:;

(2)當AC=2,CD=1時,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

18000

第二周

4

10

31000

1)分別求A、B兩種型號的凈水器的銷售單價;

2)若該電器公司準備用不多于54000元的金額采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC的三邊上,分別取點D、EF,使AD=BE=CF

1)求證:△DEF是等邊三角形.

2)若2BE=EC,求∠FEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(0,3)、B(3,0),以點B為圓心、2為半徑的⊙B上有一動點P.連接AP,若點CAP的中點,連接OC,則OC的最小值為( 。

A. 1 B. 2﹣1 C. D. ﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是等邊三角形的邊,上的點,且,于點,于點,已知,,則等于(

A.10B.12C.14D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點為射線上一個動點(不與重合),以為一邊在的右側作,使,,過點,交直線于點,連接

1)如圖①,若,則按邊分類: 三角形,并證明;

2)若

①如圖②,當點在線段上移動時,判斷的形狀并證明;

②當點在線段的延長線上移動時,是什么三角形?請在圖③中畫出相應的圖形并直接寫出結論(不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(AB<BC)的對角線的交點O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點。

該學習小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2=CD2+CN2,在圖中(三角板一邊與OC重合),CN2=BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結論選擇其一說明理由。

試探究圖中BN、CN、CM、DN這四條線段之間的數(shù)量關系,寫出你的結論,并說明理由。

將矩形ABCD改為邊長為1的正方形ABCD,直角三角板的直角頂點繞O點旋轉(zhuǎn)到圖,兩直角邊與AB、BC分別交于M、N,直接寫出BN、CN、CM、DM這四條線段之 間所滿足的數(shù)量關系(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC 是等腰直角三角形,∠ABC=90°,AB平行x 軸,點C x 軸上,若點AB分別在正比例函數(shù) y=6x y=kx 的圖象上,則 k=__________

查看答案和解析>>

同步練習冊答案