如圖,△ABC中,AD平分∠BAC,CD∥AB交AD于D.試判斷△ADC的形狀,并說明你的理由.

解:△ADC為等腰三角形.
證明:∵CD∥AB,
∴∠1=∠ADC,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠ADC,
∴AC=DC,
∴△ADC為等腰三角形.
分析:利用平行線的性質可以得到:∠1=∠ADC,利用角平分線的性質可以得到∠1=∠2,從而得到∠2=∠ADC,利用等角對等邊可以判定等腰三角形.
點評:本題考查了等腰三角形的判定,題目中應用到了平行線的性質及等角對等邊的知識,題目比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案