Rt△ABC兩直角邊的長(zhǎng)分別為3和4,則此Rt△ABC斜邊上的中線長(zhǎng)為( 。
分析:根據(jù)直角三角形的性質(zhì),斜邊上的中線等于斜邊的一半,先根據(jù)勾股定理求得斜邊,再求出答案.
解答:解:∵Rt△ABC兩直角邊的長(zhǎng)分別為3和4,
∴Rt△ABC的斜邊長(zhǎng)為5,
∴Rt△ABC斜邊上的中線長(zhǎng)為2.5.
故選C.
點(diǎn)評(píng):本題考查了勾股定理、直角三角形斜邊上的中線等于斜邊的一半,是基礎(chǔ)知識(shí)比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,Rt△ABC兩直角邊的邊長(zhǎng)為AC=1,BC=2.
(1)如圖2,⊙O與Rt△ABC的邊AB相切于點(diǎn)X,與邊CB相切于點(diǎn)Y.請(qǐng)你在圖2中作出并標(biāo)明⊙O的圓心(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)P是這個(gè)Rt△ABC上和其內(nèi)部的動(dòng)點(diǎn),以P為圓心的⊙P與Rt△ABC的兩條邊相切.設(shè)⊙P的面積為S,你認(rèn)為能否確定S的最大值?若能,請(qǐng)你求出S的最大值;若不能,請(qǐng)你說(shuō)明不能確定S的最大值的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧)如圖,在平面直角坐標(biāo)系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.
(1)請(qǐng)寫出旋轉(zhuǎn)中心的坐標(biāo)是
O(0,0)
O(0,0)
,旋轉(zhuǎn)角是
90
90
度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時(shí)針旋轉(zhuǎn)90°、180°的三角形;
(3)設(shè)Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在長(zhǎng)為44,寬為12的矩形PQRS中,將一張直角三角形紙片ABC和一張正方形紙片DEFG如圖放置,其中邊AB、DE在PQ上,邊EF在QR上,邊BC、DG在同一直線上,且Rt△ABC兩直角邊BC=6,AB=8,正方形DEFG的邊長(zhǎng)為4.從初始時(shí)刻開始,三角形紙片ABC,沿AP方向以每秒1個(gè)單位長(zhǎng)度的速度向左平移;同時(shí)正方形紙片DEFG,沿QR方向以每秒2個(gè)單位長(zhǎng)度的速度向上平移,當(dāng)邊GF落在SR上時(shí),紙片DEFG立即沿RS方向以原速度向左平移,直至G點(diǎn)與S點(diǎn)重合時(shí),兩張紙片同時(shí)停止移動(dòng).設(shè)平移時(shí)間為x秒.
(1)請(qǐng)?zhí)羁眨寒?dāng)x=2時(shí),CD=
2
2
2
2
,DQ=
4
2
4
2
,此時(shí)CD+DQ
=
=
CQ(請(qǐng)?zhí)睢埃肌、?”、“>”);
(2)如圖2,當(dāng)紙片DEFG沿QR方向平移時(shí),連接CD、DQ和CQ,求平移過(guò)程中△CDQ的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍(這里規(guī)定線段的面積為零);
(3)如圖3,當(dāng)紙片DEFG沿RS方向平移時(shí),是否存在這樣的時(shí)刻x,使以A、C、D為頂點(diǎn)的三角形是等腰三角形?若存在,求出對(duì)應(yīng)x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省無(wú)錫市崇安區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1RtABC兩直角邊的邊長(zhǎng)為AC3,BC4

1)如圖2,⊙ORtABC的邊AB相切于點(diǎn)X,與邊BC相切于點(diǎn)Y.請(qǐng)你在圖2中作出并標(biāo)明⊙O的圓心(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

2P是這個(gè)RtABC上和其內(nèi)部的動(dòng)點(diǎn),以P為圓心的⊙PRtABC的兩條邊相切.設(shè)⊙P的面積為S,你認(rèn)為能否確定S的最大值?若能,請(qǐng)你求出S的最大值;若不能,請(qǐng)你說(shuō)明不能確定S的最大值的理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案