【題目】甲,乙,丙三人各有郵票若干枚,要求互相贈送.先由甲送給乙,丙,所給的枚數(shù)等于乙,丙原來各有的郵票數(shù);然后依同樣的游戲規(guī)則再由乙送給甲,丙現(xiàn)有的郵票數(shù),最后由丙送給甲,乙現(xiàn)有的郵票數(shù).互相送完后,每人恰好各有64枚.你能知道他們原來各有郵票多少枚嗎?說出你的思考過程.

【答案】解:設(shè)甲原有郵票x枚,乙原有郵票y枚,丙原有郵票z枚.

原有

x

y

z

第一次送后

x﹣y﹣z

2y

2z

第二次送后

2(x﹣y﹣z)

2y﹣(x﹣y﹣z)﹣2z

4z

第三次送后

4(x﹣y﹣z)

2[2y﹣(x﹣y﹣z)﹣2z]

4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z]

根據(jù)第三次贈送后列方程組
,
,
③﹣②得 2z﹣y=8 ④,
②+①得 y﹣z=24 ⑤,
④+⑤得 z=32,
將z代入⑤得 y=56,
將y、z代入①得 x=104,
答:甲原有郵票104枚,乙原有郵票56枚,丙原有郵票32枚.
【解析】假設(shè)甲原有郵票x枚,乙原有郵票y枚,丙原有郵票z枚.根據(jù)題目說明列出三次贈送的過程如下表

原有

x

y

z

第一次送后

x﹣y﹣z

2y

2z

第二次送后

2(x﹣y﹣z)

2y﹣(x﹣y﹣z)﹣2z

4z

第三次送后

4(x﹣y﹣z)

2[2y﹣(x﹣y﹣z)﹣2z]

4z﹣2(x﹣y﹣z)﹣[2y﹣(x﹣y﹣z)﹣2z]

根據(jù)第三次贈送后的結(jié)果列出方程組
先化簡,最后代入消元法或加減消元法求出方程組的解即可.
【考點精析】通過靈活運用解三元一次方程組,掌握通過“代入”或“加減”消元,把“三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進而轉(zhuǎn)化為解一元一次方程即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝點用6000購進A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤3800元(毛利潤=售價﹣進價),這兩種服裝的進價,標(biāo)價如表所示.

類型
價格

A型

B型

進價(元/件)

60

100

標(biāo)價(元/件)

100

160


(1)求這兩種服裝各購進的件數(shù);
(2)如果A種服裝按標(biāo)價的8折出售,B種服裝按標(biāo)價的7折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某步行街擺放有若干盆甲、乙、丙三種造型的盆景.甲種盆景由15朵紅花、24朵黃花和25朵紫花搭配而成,乙種盆景由10朵紅花和12朵黃花搭配而成,丙種盆景由10朵紅花、18朵黃花和25朵紫花搭配而成.這些盆景一共用了2900朵紅花,3750朵紫花,求黃花一共用了多少朵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點Pm2)與點Q3,n)關(guān)于x軸對稱,則P點關(guān)于原點對稱的點M的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)為1,5,34,5,6,這組數(shù)據(jù)的極差、眾數(shù)、中位數(shù)分別為( 。

A. 4,45 B. 5,54.5 C. 5,54 D. 5,32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABDEACDF,AC=DF下列條件中不能判斷ABC≌△DEF的是( 。

A. AB=DE B. B=∠E C. EF=BC D. EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以BC為半徑作B,交AB于點C,交AB的延長線于點E,連接CD、CE

1)求證:ACD∽△AEC

2)當(dāng)時,求tanE;

3)若AD=4,AC=4,求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=ax2+bx+c(a≠0)的圖象與拋物線y=x2﹣4x+3的圖象關(guān)于y軸對稱,則函數(shù)y=ax2+bx+c的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道a+b=0時,a3+b3=0也成立,若將a看成a3的立方根,b看成b3的立方根,我們能否得出這樣的結(jié)論:若兩個數(shù)的立方根互為相反數(shù),則這兩個數(shù)也互為相反數(shù).

1)試舉一個例子來判斷上述猜測結(jié)論是否成立;

2)若互為相反數(shù),求的值.

查看答案和解析>>

同步練習(xí)冊答案