【題目】如圖,某中學(xué)兩座教學(xué)樓中間有個(gè)路燈,甲、乙兩個(gè)人分別在樓上觀察路燈頂端,視線所及如圖①所示.根據(jù)實(shí)際情況畫(huà)出平面圖形如圖②,CDDF,ABDF,EFDF,甲從點(diǎn)C可以看到點(diǎn)G處,乙從點(diǎn)E恰巧可以看到點(diǎn)D處,點(diǎn)BDF的中點(diǎn),路燈AB5.5米,DF=120米,BG=10.5米,求甲、乙兩人的觀測(cè)點(diǎn)到地面的距離的差.

【答案】25.9(米)

【解析】

利用垂直的定義可證∠ABD=∠F,再利用有兩組對(duì)應(yīng)角相等的兩三角形相似,可證得△DAB~△DEF,同理得△GAB~△GCD,再利用相似三角形的對(duì)應(yīng)邊成比例,就可求出EF,DG的長(zhǎng),然后求出CD的長(zhǎng)即甲、乙兩人的觀測(cè)點(diǎn)到地面的距離的差.

∵AB⊥DF,EF⊥DF,

∴∠ABD=∠F=90°,

∵∠EDF=∠ADB,

∴△DAB~△DEF,

同理得△GAB~△GCD

點(diǎn)BDF的中點(diǎn),

∴DB=BF=DF=×120=60,

∴EF=2AB=2x5.5=11,

∵BG=10.5,

∴DG=10.5+60=70.5

∴CD=AB=×55≈36.9

甲、乙兩人的觀察點(diǎn)到地面的距離的差為:36.9-11=25.9(米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,動(dòng)點(diǎn)點(diǎn)出發(fā)以/秒向終點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā)以/秒按的方向在邊,上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒),那么的面積隨著時(shí)間(秒)變化的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說(shuō)法錯(cuò)誤的是( 。

A.平均數(shù)是6

B.中位數(shù)是6.5

C.眾數(shù)是7

D.平均每周鍛煉超過(guò)6小時(shí)的人數(shù)占該班人數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)前夕,某批發(fā)部從廠家購(gòu)進(jìn)A、B兩種禮盒,已知購(gòu)進(jìn)2個(gè)A禮盒和3個(gè)B禮盒共花520元;購(gòu)進(jìn)3個(gè)A禮盒和2個(gè)B禮盒共花費(fèi)480元.

1)求A、B兩種禮盒的單價(jià)分別是多少元?

2)該批發(fā)部經(jīng)理購(gòu)進(jìn)這兩種禮盒恰好用去4800元購(gòu)進(jìn)A種禮盒最多18個(gè),B種禮盒的數(shù)量不超過(guò)A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?

3)已知銷(xiāo)售一個(gè)A種禮盒可獲利10元,銷(xiāo)售一個(gè)B種禮盒可獲利18元,該店主決定每售出一個(gè)B種禮盒,為愛(ài)心公益基金捐款m元,每個(gè)A種禮盒的利潤(rùn)不變,在(2)的條件下,要使A、B兩種禮盒全部售出后所有方案獲利均相同,m的值應(yīng)是多少?此時(shí)這個(gè)批發(fā)部獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:如圖1,在△ABC中,當(dāng)DEBC時(shí)可以得到三組成比例線段:① ;② ;③ .反之,當(dāng)對(duì)應(yīng)線段程比例時(shí)也可以推出DEBC

理解運(yùn)用:三角形的內(nèi)接四邊形是指頂點(diǎn)在三角形各邊上的四邊形.

1)如圖2,已知矩形DEFG是△ABC的一個(gè)內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點(diǎn)D、E、FG的對(duì)應(yīng)點(diǎn)分別為P、BQ、H,在圖2中畫(huà)出平移后的圖形;

2)在(1)所得的圖形中,連接CH并延長(zhǎng)交BP的延長(zhǎng)線于點(diǎn)R,連接AR.求證:ARBC

3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建一個(gè)內(nèi)接矩形廣場(chǎng)DEFG(點(diǎn)E、F在邊BC上,點(diǎn)D、G分別在邊ABAC上),三角形其余部分進(jìn)行植被綠化,按要求欲使矩形DEFG的對(duì)角線EG最短,請(qǐng)?jiān)趥溆脠D中畫(huà)出使對(duì)角線EG最短的矩形.并求出對(duì)角線EG的最短距離(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某童裝專(zhuān)賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷(xiāo)售價(jià)為60元,每天可售出20件,為迎接雙十一,專(zhuān)賣(mài)店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2設(shè)每件童裝降價(jià)x時(shí),平均每天可盈利y元.

寫(xiě)出yx的函數(shù)關(guān)系式;

當(dāng)該專(zhuān)賣(mài)店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?

該專(zhuān)賣(mài)店要想平均每天盈利600元,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,P為CD的中點(diǎn),連結(jié)AP,過(guò)點(diǎn)B作BE⊥AP于點(diǎn)E,延長(zhǎng)CE交AD于點(diǎn)F,過(guò)點(diǎn)C作CH⊥BE于點(diǎn)G,交AB于點(diǎn)H,連接HF.下列結(jié)論正確的是( 。

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=3,BC=4,將矩形ABCD沿對(duì)角線BD折疊點(diǎn)C落在點(diǎn)E的位置,則AE的長(zhǎng)度為(  )

A.B.C.3D.

查看答案和解析>>

同步練習(xí)冊(cè)答案