【題目】我們定義:有一組鄰邊相等且有一組對角互補的凸四邊形叫做等補四邊形
(1)概念理解
①根據(jù)上述定義舉一個等補四邊形的例子:
②如圖1,四邊形ABCD中,對角線BD平分∠ABC,∠A+∠C=180°,求證:四邊形ABCD是等補四邊形
(2)性質探究:
③小明在探究時發(fā)現(xiàn),由于等補四邊形有一組對角互補,可得等補四邊形的四個頂點共圓,如圖2,等補四邊形ABCD內接于⊙O,AB=AD,則∠ACD ∠ACB(填“>”“<”或“=“);
④若將兩條相等的鄰邊叫做等補四邊形的“等邊”,等邊所夾的角叫做“等邊角”,它所對的角叫做“等邊補角”連接它們頂點的對角線叫做“等補對角線”,請用語言表述③中結論:
(3)問題解決
在等補四邊形ABCD中,AB=BC=2,等邊角∠ABC=120°,等補對角線BD與等邊垂直,求CD的長.
【答案】(1)①正方形;②詳見解析;(2)③=;④等補四邊形的“等補對角線”平分“等邊補角”;(3)CD的值為2或4.
【解析】
(1)①正方形是等補四邊形.②如圖1中,作DM⊥BA于M,DN⊥BC于N,則∠DMA=∠DNC=90°,證明△ADM≌△CDN(AAS),推出AD=DC,即可解決問題.
(2)③根據(jù)弦,弧,圓周角之間的關系解決問題即可.④根據(jù)“等補對角線”,“等邊補角”等定義,利用③中結論即可解決問題.
(3)分兩種情形:①如圖3﹣1中,當BD⊥AB時.②如圖3﹣2中,當BD⊥BC時,分別求解即可.
(1)①解:正方形是等補四邊形.
②證明:如圖1中,作DM⊥BA于M,DN⊥BC于N,則∠DMA=∠DNC=90°,
∵∠A+∠BCD=180°,∠BCD+∠DCN=180°,
∴∠A=∠DCN,
∵BD平分∠ABC,
∴DM=DN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AD=DC,
∴四邊形ABCD是等補四邊形.
(2)③解:如圖2中,
∵AD=AB,
∴=,
∴∠ACD=∠ACB.
故答案為=.
④解:由題意,等補四邊形的“等補對角線”平分“等邊補角”.
故答案為等補四邊形的“等補對角線”平分“等邊補角”.
(3)解:如圖3﹣1中,當BD⊥AB時,
∵∠ADC+∠ABC=180°,∠ABC=120°,
∴∠ADC=60°,
∵∠ABD=90°,
∴AD是⊙O的直徑,
∴∠ACD=90°,
∴∠DAC=∠DBC=30°,
∵BA=BC,∠ABC=120°,
∴∠BAC=∠ACB=30°,
∴∠BAC=∠BDC=30°,
∴∠CBD=∠CDB,
∴DC=BC=2.
如圖3﹣2中,當BD⊥BC時,
∵∠DBC=90°,
∴CD是⊙O的直徑,
∵BA=BC,∠ABC=120°,
∴∠BAC=∠ACB=30°,
∴∠BAC=∠BDC=30°,
∴CD=2BC=4,
綜上所述,滿足條件的CD的值為2或4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,點分別是的中點,連接.
(1)探索發(fā)現(xiàn):
圖1中,的值為_____________;的值為_________.
(2)拓展探究
若將繞點逆時針方向旋轉一周,在旋轉過程中的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
當旋轉至三點在同一直線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸相交于點A(-3,0)、點B(1,0),與y軸交于點C(0,3),點D是第二象限內拋物線上一動點.F點坐標為(-4,0).
(1)求這條拋物線的解析式;并寫出頂點坐標;
(2)當D為拋物線的頂點時,求△ACD的面積;
(3)連接OD交線段AC于點E.當△AOE與△ABC相似時,求點D的坐標;
(4)在x軸上方作正方形AFMN,將正方形AFMN沿x軸下方向向右平移t個單位,其中0≤t≤4,設正方形AFMN與△ABC的重疊總分面積為S,直接寫出S關于t的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點A,與x軸的負半軸交于點B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點P是這個二次函數(shù)圖像在第二象限內的一線,過點P作y軸的垂線與線段AB交于點C,求線段PC長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現(xiàn),被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(shù)(個)與甲加工時間之間的函數(shù)圖象為折線,如圖所示.
(1)這批零件一共有 個,甲機器每小時加工 個零件,乙機器排除故障后每小時加工 個零件;
(2)當時,求與之間的函數(shù)解析式;
(3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數(shù)相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:直線交x軸于點A,交y軸于點B,拋物線y=ax2+bx+c經過A、B、C(1,0)三點.
(1)求拋物線的解析式;
(2)若點D的坐標為(-1,0),在直線上有一點P,使ΔABO與ΔADP相似,求出點P的坐標;
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點E,使ΔADE的面積等于四邊形APCE的面積?如果存在,請求出點E的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系內,A,B為x軸上兩點,以AB為直徑的⊙M交y軸于C,D兩點,C為的中點,弦AE交y軸于點F,且點A的坐標為(﹣2,0),CD=8.
(1)求⊙M的半徑;
(2)動點P在⊙M的圓周上運動.①如圖1,當EP平分∠AEB時,求PN×EP的值;②如圖2,過點D作⊙M的切線交x軸于點Q,當點P與點A,B不重合時,是否為定值?若是,請求出其值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com