【題目】如圖,已知ABCD,DA平分∠BDC,A=C.

(1)試說明:CEAD;

(2)若∠C=30°,求∠B的度數(shù).

【答案】(1)詳見解析;(2)∠B=120°.

【解析】

(1)欲證明CE∥AD,只需推知∠ADC=∠C即可;

(2)利用(1)中平行線的性質(zhì)來求∠B的度數(shù).

解:(1)∵AB∥CD,

∴∠A=∠ADC(兩直線平行,內(nèi)錯角相等),

∵∠A=C,

∴∠ADC=∠C,

∴CE∥AD(內(nèi)錯角相等,兩直線平行)

(2)由(1)可得∠ADC=∠C=30°,

∵DA平分∠BDC,∠ADC=∠ADB,

∴∠CDB=2∠ADC=60°,

∵AB∥DC,

∴∠B+∠CDB=180°(兩直線平行,同旁內(nèi)角互補),

∴∠B=180°﹣∠CDB=120°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】相傳有個人不講究說話藝術常引起誤會,一天他擺宴席請客,他看到還有幾個人沒來,就自言自語:“怎么該來的還不來?”客人聽了心里想難道我們是不該來的,于是有一半客人走了.他一看十分著急,又說:“不該走的倒走了!”剩下的人一聽,是我們該走啊!又有剩下的三分之二的人離開了.他著急地一拍大腿,連說:“我說的不是他們.”于是最后剩下的四個人也都告辭走了.聰明的你能知道剛開始來的客人個數(shù)是(  )

A. 24 B. 18 C. 16 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD中,AB=6,∠B=60°.E是BC邊上一動點,F(xiàn)是CD邊上一動點,且BE=CF,連接AE、AF.

(1)∠EAF的度數(shù)是;
(2)求證:AE=AF;
(3)延長AF交BC的延長線于點G,連接EF,設BE=x,EF2=y,求y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九年級學生開展測量物體高度的實踐活動,他們要測量學校一幢教學樓的高度,如圖,他們先在點C測得教學樓AB的頂點A的仰角為30°,然后向教學樓前進20米到達點D,又測得點A的仰角為45°,請根據(jù)這些數(shù)據(jù),求這幢教學樓的高度.(最后結果精確到1米,參考數(shù)據(jù) ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角ABC的斜邊上取異于B,C的兩點EF,使∠EAF=45°,求證:以EF,BE,CF為邊的三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司擬為貧困山區(qū)建一所希望小學,甲、乙兩個工程隊提交了投標方案,若獨立完成該項目,則甲工程隊所用時間是乙工程隊的1.5倍;若甲、乙兩隊合作完成該項目,則共需72天.

(1)甲、乙兩隊單獨完成建校工程各需多少天?

(2)若由甲工程隊單獨施工,平均每天的費用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊,但要求其施工的總費用不能超過甲工程隊,求乙工程隊平均每天的施工費用最多為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)y= 的圖象上,過點A,B作x軸的垂線,垂足分別是M,N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為(

A.2
B.4
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: , 點E的坐標:;
(2)若二次函數(shù)y=﹣ x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是AC上的一個動點(P與點A、C不重合)連結PB、PD,設l是△PBD的周長,當l取最小值時,求點P的坐標及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點F.若AB=2,∠ABC=60°,則AE的長為(

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案