某種商品的進價為每件50元,售價為每件60元.為了促銷,決定凡是購買10件以上的,每多買一件,售價就降低0.10元(例如,某人買20件,于是每件降價0.10×(20-10)=1元,就可以按59元/件的價格購買),但是最低價為55元/件.同時,商店在出售中,還需支出稅收等其他雜費1.6元/件.

(1)求顧客一次至少買多少件,才能以最低價購買?

(2)寫出當出售x件時(x>10),利潤y(元)與出售量x(件)之間的函數(shù)關系式;

(3)有一天,一位顧客買了47件,另一位顧客買了60件,結果發(fā)現(xiàn)賣了60件反而比賣了47件賺的錢少.為了使每次賣的越多賺的錢也越多,在其他促銷條件不變的情況下,最低價55元/件至少要提高到多少?為什么?

 

【答案】

(1)60;(2)當10<x≤60時,y=-0.1x2+9.4x;當x>60時,y=3.4x;(3)56.3元

【解析】

試題分析:(1)設顧客一次至少購買x件,根據(jù)“購買10件以上的,每多買一件,售價就降低0.10元”即可列方程求解;

(2)分當10<x≤60時,當x>60時,這兩種情況,根據(jù)“購買10件以上的,每多買一件,售價就降低0.10元”即可列出函數(shù)關系式;

(3)先把(2)中當10<x≤60時,對應的函數(shù)關系式配方,再根據(jù)二次函數(shù)的性質(zhì)求解即可.

(1)設顧客一次至少購買x件,由題意得

60-0.1(x-10)=55,解得x=60

答:顧客一次至少買60件,才能以最低價購買;

(2)當10<x≤60時,y=[60-0.1(x-10)-50]x-1.6x=-0.1x2+9.4x

當x>60時,y=(55-50-1.6)x=3.4x;

(3)利潤y=-0.1x2+9.4x=-0.1(x-47)2+220.9,

∵當x=47時,利潤y有最大值,而超過47時,利潤y反而減少.

要想賣的越多賺的越多,即 的增大而增大,

由二次函數(shù)性質(zhì)可知,x≤47,

∴當x=47時,最低售價應定為60-0.1×(47-10)=56.3元.

考點:二次函數(shù)的應用

點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、經(jīng)市場調(diào)查,某種商品的進價為每件6元,專賣商店的每日固定成本為150元.當銷售價為每件10元時,日均銷售量為100件,單價每降低1元,日均銷售量增加40個.設單價為x元時的日均毛利潤為y元,則y關于x的函數(shù)解析式為
y=-40x2+740x-3150

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣一模)某種商品的進價為每件50元,售價為每件60元.為了促銷,決定凡是購買10件以上的,每多買一件,售價就降低0.10元(例如,某人買20件,于是每件降價0.10×(20-10)=1元,就可以按59元/件的價格購買),但是最低價為55元/件.同時,商店在出售中,還需支出稅收等其他雜費1.6元/件.
(1)求顧客一次至少買多少件,才能以最低價購買?
(2)寫出當一次出售x件時(x>10),利潤y(元)與出售量x(件)之間的函數(shù)關系式;
(3)有一天,一位顧客買了47件,另一位顧客買了60件,結果發(fā)現(xiàn)賣了60件反而比賣了47件賺的錢少.為了使每次賣的越多賺的錢也越多,在其他促銷條件不變的情況下,最低價55元/件至少要提高到多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

商場某種商品的進價為每件100元,當售價定為每件150元時平均每天可銷售30件.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出 2件.設每件商品降價x元(x為整數(shù)).據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加
2x
2x
件,每件商品盈利
(50-x)
(50-x)
元(用含x的代數(shù)式表示);
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
(3)若你是該商場經(jīng)營者,該如何設計銷售方案,才能使該商場日盈利最大?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年江蘇省南京市溧水縣中考數(shù)學一模試卷(解析版) 題型:解答題

某種商品的進價為每件50元,售價為每件60元.為了促銷,決定凡是購買10件以上的,每多買一件,售價就降低0.10元(例如,某人買20件,于是每件降價0.10×(20-10)=1元,就可以按59元/件的價格購買),但是最低價為55元/件.同時,商店在出售中,還需支出稅收等其他雜費1.6元/件.
(1)求顧客一次至少買多少件,才能以最低價購買?
(2)寫出當一次出售x件時(x>10),利潤y(元)與出售量x(件)之間的函數(shù)關系式;
(3)有一天,一位顧客買了47件,另一位顧客買了60件,結果發(fā)現(xiàn)賣了60件反而比賣了47件賺的錢少.為了使每次賣的越多賺的錢也越多,在其他促銷條件不變的情況下,最低價55元/件至少要提高到多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省杭州市中考數(shù)學模擬試卷(三)(解析版) 題型:填空題

經(jīng)市場調(diào)查,某種商品的進價為每件6元,專賣商店的每日固定成本為150元.當銷售價為每件10元時,日均銷售量為100件,單價每降低1元,日均銷售量增加40個.設單價為x元時的日均毛利潤為y元,則y關于x的函數(shù)解析式為   

查看答案和解析>>

同步練習冊答案