【題目】在平行四邊形ABCD中,點(diǎn)A1,A2,A3,A4和C1,C2,C3,C4分別是AB和CD的五等分點(diǎn),點(diǎn)B1,B2和D1,D2分別是BC和DA的三等分點(diǎn),已知四邊形A4B2C4D2的面積為1cm2,則平行四邊形ABCD的面積為( )cm2.
A.B.C.D.15
【答案】C
【解析】
可以設(shè)平行四邊形ABCD的面積是S,根據(jù)等分點(diǎn)的定義利用平行四邊形ABCD的面積減去四個角上的三角形的面積,就可表示出四邊形A4B2C4D2的面積,從而得到關(guān)于S的方程,解方程即得答案.
解:設(shè)平行四邊形ABCD的面積是S,設(shè)AB=5a,BC=3b.AB邊上的高是3x,BC邊上的高是5y.
則S=5a3x=3b5y.即ax=by=.
△AA4D2與△B2CC4全等,B2C=BC=b,B2C邊上的高是5y=4y.
則△AA4D2與△B2CC4的面積是2by=.
同理△D2C4D與△A4BB2的面積是.
則四邊形A4B2C4D2的面積是S﹣﹣﹣﹣=,即=1,
解得:,即平行四邊形ABCD的面積為.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點(diǎn),G、H分別是對角線BD、AC的中點(diǎn).
(1)求證:四邊形EGFH是菱形;
(2)若AB=1,則當(dāng)∠ABC+∠DCB=90°時,求四邊形EGFH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明解不等式的過程如圖,請指出他解答過程中錯誤步驟的序號,并寫出正確的解答過程.
解:去分母,得3(1+x)-2(2x+1)≤1.①
去括號,得3+3x-4x+1≤1.②
移項(xiàng),得3x-4x≤1-3-1.③
合并同類項(xiàng),得-x≤-3.④
兩邊都除以-1,得x≤3.⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探究函數(shù)y=x+的圖象與性質(zhì)】
(1)函數(shù)y=x+的自變量x的取值范圍是________;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+的圖象大致是________;
(3)對于函數(shù)y=x+,求當(dāng)x>0時,y的取值范圍.請將下列的求解過程補(bǔ)充完整.
解:∵x>0,∴y=x+=()2+=+________.
∵≥0,∴y≥________.
【拓展運(yùn)用】
(4)若函數(shù)y=,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, ,是的中點(diǎn),連接并延長交的延長線于點(diǎn),點(diǎn)在邊上,且.
(1)求證:≌.
(2)連接,判斷與的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,與相交于點(diǎn),且,,垂足分別為點(diǎn)、.
(1)若,,求的長.
(2)如圖2,取中點(diǎn),連接、,請判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=3,AC=4,BC=5,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)求四邊形DAEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BC相交于點(diǎn)N.連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體的三個視圖如圖所示(單位:cm).
(1)寫出這個幾何體的名稱: ;
(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計算這個幾何體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com