直角三角形的三邊長(zhǎng)是連續(xù)偶數(shù),則三邊長(zhǎng)分別是(  )
A、2,4,6
B、4,6,8
C、6,8,10
D、8,10,12
考點(diǎn):一元二次方程的應(yīng)用,勾股定理
專題:應(yīng)用題
分析:根據(jù)連續(xù)偶數(shù)相差是2,設(shè)中間的偶數(shù)是x,則另外兩個(gè)是x-2,x+2根據(jù)勾股定理即可解答.
解答:解:根據(jù)連續(xù)偶數(shù)相差是2,設(shè)中間的偶數(shù)是x,則另外兩個(gè)是x-2,x+2根據(jù)勾股定理,得
(x-2)2+x2=(x+2)2
x2-4x+4+x2=x2+4x+4,
x2-8x=0,
x(x-8)=0,
解得x=8或0(0不符合題意,應(yīng)舍去),
所以它的三邊是6,8,10.
故選C.
點(diǎn)評(píng):本題考查了一元二次方程的應(yīng)用及勾股定理,注意連續(xù)偶數(shù)的特點(diǎn),能夠熟練解方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若(x-y)2+|5x-7y-2|=0,則x-3y=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直線x=-3與直線y=5的交點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=
1
2
x+1交y軸于點(diǎn)A,過(guò)該直線上一點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)拋物線y=ax2+
17
4
x+c過(guò)A、B兩點(diǎn).
(1)求拋物線的解析式.
(2)在x軸上是否存在一點(diǎn)D,使AD+BD最短?若存在,請(qǐng)求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)P(t,0)為線段OC上任一點(diǎn)(不與點(diǎn)O、C重合),過(guò)點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.
①求MN的最大值;
②連接CM、BN,試求:當(dāng)t為何值時(shí),四邊形BCMN為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是人頭像的一半,以圖中虛線為對(duì)稱軸畫(huà)出它的另一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=AD,BC=CD,請(qǐng)說(shuō)明
(1)AC平分∠BAD的理由;
(2)AC與BD相互垂直的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式和C點(diǎn)坐標(biāo);
(2)設(shè)該拋物線的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在該拋物線上求點(diǎn)Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABD和△BCE中,已知BD=BE,∠ABD=∠CBE,在添加一個(gè)條件后,不能說(shuō)明△ABD和△BCE全等的是(  )
A、AB=BC
B、∠A=∠C
C、AD=CE
D、∠D=∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小明、小亮、小芳和兩個(gè)陌生人甲、乙同在如圖所示的地下車庫(kù)等電梯,已知兩個(gè)陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)小明想求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說(shuō):“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?若公平,說(shuō)明理由;若不公平,請(qǐng)修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

同步練習(xí)冊(cè)答案