精英家教網(wǎng)如圖在△ABC中,D為BC上的一點,E為AD上的一點,BE的延長線交AC于點F,已知
BD
BC
=
1
a
,
AE
AD
=
1
b
(a,b為不小于2的整數(shù)),則
AF
AC
的值是
 
分析:過點D作DG∥AC交BF于點G,用平行線分線段成比例定理以及比例的性質(zhì)進(jìn)行變形即可得到答案.
解答:精英家教網(wǎng)解:過點D作DG∥AC交BF于點G
DG
CF
=
BD
BC
=
1
a
,
DG
AF
=
ED
AE
=b-1
AF
CF
=
1
a(b-1)

AF
AC
=
1
ab-a+1
點評:此題主要考查平行線分線段成比例定理的理解及運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案