【題目】已知三角形的三邊長分別是3,8,x,x的值是偶數(shù),x值的個數(shù)為(   )

A. 3 B. 4 C. 5 D. 6

【答案】A

【解析】根據(jù)三角形的三邊關(guān)系第三邊應(yīng)大于兩邊之差,而小于兩邊之和,求得第三邊的取值范圍;再根據(jù)第三邊是偶數(shù)這一條件,求得第三邊的值.

解:根據(jù)三角形的三邊關(guān)系,得:

第三邊x的取值范圍:5<x<11,

又∵第三邊的長是偶數(shù),

∴第三邊的長為6、810,有3種情況.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線l與y軸、直線y=3x、直線y=x分別交于點A,B,C.則下列結(jié)論正確的個數(shù)有(
①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2= OB2

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二輪自行車的后輪磨損比前輪要大,當輪胎的磨損度(%)達到100時,輪胎就報廢了,當兩個輪的中的一個報廢后,自行車就不可以繼續(xù)騎行了.過去的資料表明:把甲、乙兩個同質(zhì)、同型號的新輪胎分別安裝在一個自行車的前、后輪上后,甲、乙輪胎的磨損度(%)y1、y2與自行車的騎行路程x (百萬米)都成正比例關(guān)系,如圖(1)所示:

(1)線段OB表示的是(填“甲”或“乙”),它的表達式是(不必寫出自變量的取值范圍);
(2)求直線OA的表達式,根據(jù)過去的資料,這輛自行車最多可騎行多少百萬米?
(3)愛動腦筋的小聰,想了一個增大自行車騎行路程的方案:如圖(2),當自行車騎行a百萬米后,我們可以交換自行車的前、后輪胎,使得甲、乙兩個輪胎在b百萬米處,同時報廢,請你確定方案中a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a + b =3,b c = 12,則a + 2b c的值為( )

A. 15 B. 9 C. 15 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一根8米長的銅絲圍成一個平行四邊形,使長邊和短邊的比是5:3,則長邊的長是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應(yīng)價格購物券,可以重新在本商場消費,某顧客剛好消費200元.

(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y0是關(guān)于y的一元二次方程(m1y2+my+4m240的一個根,那么m的值是( 。

A. 0B. ±1C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】迎接學(xué)!霸蔽乃噮R演,八年級某班的全體同學(xué)捐款購買了表演道具,經(jīng)過充分的排練準備,最終獲得了一等獎.班長對全體同學(xué)的捐款情況繪制成下表:

捐款金額

5元

10元

15元

20元

捐款人數(shù)

10人

15人

5人

由于填表時不小心把墨水滴在了統(tǒng)計表上,致使表中數(shù)據(jù)不完整,但知道捐款金額為10元的人數(shù)為全班人數(shù)的30%,結(jié)合上表回答下列問題:
(1)該班共有名同學(xué);
(2)該班同學(xué)捐款金額的眾數(shù)是元,中位數(shù)是元.
(3)如果把該班同學(xué)的捐款情況繪制成扇形統(tǒng)計圖,則捐款金額為20元的人數(shù)所對的扇形圓心角為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中∠A=30°,E是AC邊上的點,先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點D,又將△BCD沿著BD翻折,C點恰好落在BE上,此時∠CDB=82°,則原三角形的∠B為(
A.75°
B.76°
C.77°
D.78°

查看答案和解析>>

同步練習(xí)冊答案