如圖,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,過直角頂點C作CA1⊥AB,垂足為A1,再過A1作A1C1⊥BC,垂足為C1,過C1作C1A2⊥AB,垂足為A2,再過A2作A2C2⊥BC,垂足為C2,…,這樣一直作下去,得到了一組線段CA1,A1C1,C1A2,A2C2,…,AnCn,則A1C1=________,AnCn=________.

    
分析:首先由Rt△ABC中,∠ACB=90°,AC=6,BC=8,利用勾股定理即可求得AB的長,易證得△CA1B∽△ACB,然后由相似三角形的對應邊成比例,求得A1C的值,同理可求得:A1C1,A2C1,A2C2的值,則可得規(guī)律:AnCn=6×(2n
解答:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB==10,
∵CA1⊥AB,
∴∠CA1B=∠ACB=90°,
∵∠B是公共角,
∴△CA1B∽△ACB,

,
即A1C=AC=6×,
同理可得:A1C1=A1C=6×(2=6×(2×1
A2C1=A1C1=6×(3,
A2C2=A2C1=6×(4=6×(2×2,
可得規(guī)律為:AnCn=6×(2n
故答案為:6×(2,6×(2n
點評:此題考查了相似三角形的判定與性質以及勾股定理.此題屬于規(guī)律性題目,難度適中,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點D,BD的垂直平分線分別交AB,BC于點E、F,CD=CG.
(1)請以圖中的點為頂點(不增加其他的點)分別構造兩個菱形和兩個等腰梯形.那么,構成菱形的四個頂點是
B,E,D,F(xiàn)
E,D,C,G
;構成等腰梯形的四個頂點是
B,E,D,C
E,D,G,F(xiàn)
;
(2)請你各選擇其中一個圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC是⊙O的內接三角形,∠BAC=90°,AH⊥BC,垂足為D,過點B作弦BF交AD于點精英家教網(wǎng)E,交⊙O于點F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長線上一點,PE⊥AB交BA延長線于E,PF⊥AC交AC延長線于F,D為BC中點,連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過點A做AE⊥AB,且AE=15,連接BE交AC于點P.
(1)求PA的長;
(2)以點A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習冊答案