如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應的二次函數(shù)解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.
(1)解方程x2-4x+3=0得:
x=1或x=3,而OA<OB,
則點A的坐標為(-1,0),點B的坐標為(3,0);(1分)
∵A、B關于拋物線對稱軸對稱,
∴△DAB是等腰三角形,而∠DAB=45°,
∴△DAB是等腰直角三角形,得D(1,-2);
令拋物線對應的二次函數(shù)解析式為y=a(x-1)2-2,
∵拋物線過點A(-1,0),
∴0=4a-2,得a=
1
2
,
故拋物線對應的二次函數(shù)解析式為y=
1
2
(x-1)2-2(或?qū)懗蓎=
1
2
x2-x-
3
2
);(4分)

(2)∵CA⊥AD,∠DAC=90°,(5分)
又∵∠DAB=45°,
∴∠CAB=45°;
令點C的坐標為(m,n),則有m+1=n,(6分)
∵點C在拋物線上,
∴n=
1
2
(m-1)2-2;(7分)
化簡得m2-4m-5=0
解得m=5,m=-1(舍去),
故點C的坐標為(5,6);(8分)

(3)由(2)知AC=6
2
,而AD=2
2
,
∴DC=
AD2+AC2
=4
5
;
過A作AM⊥CD,
又∵
1
2
AC×AD=
1
2
DC×AM
,
∴AM=
24
4
5
=
6
5
5
,(9分)
又∵S△ADC=S△APD+S△APC
1
2
×AC×AD=
1
2
AP×d1+
1
2
AP×d2
,(11分)
d1+d2=
24
AP
24
AM
=24×
5
6
5
=4
5
;
即此時d1+d2的最大值為4
5
.(12分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0),另一個交點為B.
(1)求點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)已知直線y=k與拋物線不相交,且拋物線上任意一點到這條直線的距離與這一點到點F(-2,-
3
4
a
)的距離相等,則k的值為______.(直接寫答案)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=a(x+1)2+m的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C,頂點為M,直線MC的解析式為y=kx-3,且直線MC與x軸交于點N,sin∠BCO=
10
10

(1)求直線MC及二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點P(異于點C),使以點P、N、C為頂點的三角形是以NC為一條直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)設拋物線的頂點為D,在坐標軸上是否存在這樣的點F,使得∠DFB=∠DCB?若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在平面直角坐標系中二次函數(shù)y=-x2+bx+c的圖象經(jīng)過點A(1,-2),B(3,-1)
(1)求拋物線的解析式及頂點C的坐標;
(2)請問在y軸上是否存在點P,使得S△ABC=S△ABP?若存在,求出點P的坐標;若不存在,請說明理由;
(3)請在圖(2)上用尺規(guī)作圖的方式探究拋物線上是否存在點Q,使得△QAB是等腰三角形?若存在,請判斷點Q共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由(不用證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M.
(1)求二次函數(shù)的解析式;
(2)點P為線段BM上的一個動點,過點P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點N,使△NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

暑假期間,北關中學對網(wǎng)球場進行了翻修,在水平地面點A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點為B.有同學在直線AB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球的體積和圓柱形桶的厚度忽略不計),以M點為頂點,拋物線對稱軸為y軸,水平地面為x軸建立平面直角坐標系.
(1)請求出拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,網(wǎng)球能不能落入桶內(nèi)?
(3)當豎直擺放圓柱形桶多少個時,網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,從10米的窗口A用水管向外噴水,噴出的水流呈拋物線狀(拋物線所在平面與墻面垂直),如果拋物線的最高點M距離1米,離地面
40
3
米,試求水流落在點B距墻的距離OB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉(zhuǎn)α角,得到矩形CFED.設FC與AB交于點H,且A(0,4),C(6,0)(如圖1).
(1)當α=60°時,△CBD的形狀是______;
(2)當AH=HC時,求直線FC的解析式;
(3)當α=90°時,(如圖2).請?zhí)骄浚航?jīng)過點D,且以點B為頂點的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.

查看答案和解析>>

同步練習冊答案